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Abstract

I present a measurement of the tt differential cross section, dσ/dMtt, in pp collisions at
√

s = 1.96

TeV using 2.7 fb−1 of CDF II data. I find that dσ/dMtt is consistent with the Standard Model

expectation, as modeled by PYTHIA with CTEQ5L parton distribution functions. I set limits on the

ratio κ/MPl in the Randall-Sundrum model by looking for Kaluza Klein gravitons which decay to

top quarks. I find κ/MPl > 0.16 at the 95% confidence level.
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Chapter 1

Introduction to Top Quark Physics

1.1 Introduction

Particle physicists seek to understand the nature of the most fundamental particles and the forces

which govern their interactions. We search for the origin of mass, the underlying mechanism for the

abundance of matter over anti-matter in the universe, and seek hints of a Grand Unified Theory

that unites the four fundamental forces as we know them - strong, electromagnetic, weak and

gravitational.

This dissertation describes an analysis of the tt differential cross section, dσ/dMtt, using the

Collider Detector at Fermilab (CDF) II detector. The CDF experiment is positioned in the Tevatron

accelerator at the Fermi National Accelerator Laboratory in Batavia, Illinois. The dissertation is

organized as follows:

• This chapter motivates the measurement with an introduction to the Standard Model of par-

ticle physics with an emphasis on the role of the top quark. I also give a brief overview of the

top quark in physics beyond the Standard Model.

• Chapter 2 describes the Tevatron and the CDF II detector.

• Chapter 3 describes the Monte Carlo simulations I use to model the physics processes under

study.

• Chapter 4 outlines my selection of tt events.

• Chapter 5 explains the method used to calculate the Standard Model backgrounds to tt pro-

duction.

• In Chapter 6 I give an overview of other experimental measurements of the tt invariant mass

spectrum.

• Chapter 7 explains the analysis methodology in detail.

• In Chapter 8 I discuss the systematic uncertainties associated with this measurement and

how I evaluate them. Chapter 9 explains a modification to the analysis which reduces these

systematic uncertainties.

• In Chapter 10 I present the results of my measurement.
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• Chapter 11 describes how I set limits on new physics beyond the Standard Model.

• I conclude with Chapter 12.

1.2 The Standard Model

The Standard Model (SM) of particle physics has been remarkably successful in describing the

strong, electromagnetic and weak interactions. Gravity is not included in the SM (there is no

rigorous quantum mechanical description of the force of gravity), but it is extremely weak compared

to the other forces and not important at the relevant energy scales probed by particle physics. In the

SM all matter1 is comprised of quarks and leptons, all fermions with spin 1
2 , which can be divided

into three generations as in Table 1.1. For each of the fermions in Table 1.1 there exists an anti-

Name Symbol Charge/e Mass [MeV/c2]

First Generation
Quarks

up u + 2
3 1.5 to 4

down d − 1
3 4 to 8

Leptons
electron e− −1 0.51

electron neutrino νe 0 < 3 · 10−6

Second Generation
Quarks

charm c + 2
3 (1.15 to 1.35)·103

strange s − 1
3 80 to 130

Leptons
muon µ− −1 106

muon neutrino νµ 0 < 0.19

Third Generation
Quarks

top t + 2
3 (172.6 ± 1.4)·103

bottom b − 1
3 (4.1 to 4.4)·103

Leptons
tau τ− −1 1777

tau neutrino ντ 0 < 18.2

Table 1.1: The quarks and leptons of the Standard Model. [1, 2]

particle with the same mass but opposite charge, denoted for the quarks by the symbol q and for

the leptons by ℓ+. Until very recently it was assumed that the neutrinos were massless, but recent

measurements of the flux of solar and atmospheric neutrinos provide compelling evidence that the

neutrinos are in fact massive [1]. The physics of neutrinos is too complex to explain in detail here.

But I should mention that while the anti-particles of the charged fermions are distinct particles, it

is not known if the neutrino is its own anti-particle, denoted ν. Furthermore, the weak eigenstates

of the neutrinos in Table 1.1 are distinct from the mass eigenstates. The three forces of the SM are

described by gauge field theories which obey local symmetries and are mediated by field quanta. All

of these quanta are spin 1 particles called gauge bosons. The gauge bosons are listed in Table 1.2.

The quarks interact via the strong, weak and electromagnetic forces. The leptons do not interact

strongly. Because they are charge neutral, the neutrinos can only interact weakly while the charged

leptons interact both weakly and electromagnetically. In the next few sections I will describe the

1The Standard Model only describes ordinary matter in the universe. Experiments in cosmology tell us that this
ordinary matter comprises less than 5% of the known universe, while dark matter, which interacts only weakly in a
gravitational manner, comprises about 23% of the known universe. The rest of the universe is made of dark energy,
about which we know very little. [1]
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Force Mediator Charge/e Mass [GeV/c2]
Strong gluon (g) 0 0

Electromagnetic photon (γ) 0 0
Weak W± ±1 80.425 ± 0.038
Weak Z0 0 91.1876 ± 0.0021

Table 1.2: The gauge bosons of the Standard Model.

various field theories of the SM in more detail [3]. In these sections I will use units where h̄ = 1 and

c = 1.

1.2.1 Quantum Electrodynamics

Quantum Electrodynamics or QED is the gauge field theory which describes the electromagnetic

force. QED is the oldest and best understood theory and the other gauge theories of the Standard

Model are based on it to some extent.

The QED Lagrangian is given by:

LQED = ıΨ( /D)Ψ − mΨΨ − 1

4
FµνFµν . (1.1)

where

Dµ = ∂µ + ıgeAµ(x) (1.2)

and

Fµν = ∂µAν − ∂νAµ. (1.3)

This Lagrangian is invariant under local U(1) transformations:

Ψ → eıα(x)Ψ (1.4)

and

Aµ → Aµ − 1

ge
∂µα(x). (1.5)

The field A is a gauge field, the quanta of which is the photon. The coupling constant ge is just the

elementary unit of charge e =
√

4πα. A mass term for the photon field with the form 1
2MAµAµ

is forbidden by the gauge symmetry, consistent with the massless photons observed experimentally.

The global U(1) symmetry of QED leads to conservation of electric charge.

1.2.2 Quantum Chromodynamics

The phenomenology of the strong interactions, as described by Quantum Chromodynamics (QCD),

is different from that of electromagnetic interactions in many respects. First, quarks carry an

additional quantum number known as color (hence chromodynamics). Color was introduced to

explain the observation of, for example, the ∆++ baryon, a uuu state. Such a state appears to
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violate Fermi-Dirac statistics of spin 1
2 particles with three fermions occupying the same state. The

introduction of three colors - red, blue and green - allows the fermions to each carry an additional

quantum number and occupy the same state. Second, quarks are found in colorless confined states of

baryons or mesons, never free. The baryons are three quark states with equal mixtures of red, green

and blue, while mesons are two quark states of a color and its anti-color. Third, the interactions

between quarks are observed to be weak at short distances and stronger at long distances.

The gauge theory of QCD is invariant under transformations of the non-Abelian SU(3) group.

The QCD Lagrangian is given by:

LQCD = ıΨ(/∂ − ıgs /A)Ψ − mΨΨ − 1

2
tr[FµνFµν ]. (1.6)

LQCD appears very similar to LQED with the substitution e → gs =
√

4παs. However, there are

important differences. Instead of one gauge field there are now eight gauge fields, corresponding to

the eight generators of SU(3), the T a matrices, where:

T a =
1

2
λa (1.7)

and the λ matrices are Gell-Mann matrices. The appearance of Aµ in the Lagrangian is shorthand

for Aa
µ ·T a. Also, because the Gell-Man matrices do not commute the tensor Fµν is more complicated

than the corresponding QED case, Equation 1.3 is modified to:

Fµν = (∂µAa
ν − ∂νAa

µ − ıgs[Aµ, Aν ]). (1.8)

This additional non-zero commutator term in Equation 1.8 ultimately leads to interactions among

the gauge fields. As for the QED case, massive gluons are prohibited by the gauge symmetry.

The gluon-gluon interactions are in turn responsible for the increase in the strength of the QCD

coupling at large distances. The variation of αs =
g2

s

4π with energy is shown in Figure 1.1. Note

that in units where h̄ = 1 and c = 1 that energy and distance are simply inversely related. At

small length scales (large energies) the quarks and gluons behave as quasi-free particles because the

strong coupling is small. 2 In the high energy regime QCD can be described perturbatively. At

large separations (low energies), the strong coupling is large and quarks and gluons form bound

states. The global SU(3) symmetry of QCD leads to conservation of color, where only colorless

bound states are observed. For the purposes of this analysis, I am only interested in the high energy

regime where tt pairs are produced at the Tevatron.

1.2.3 The Weak Interactions

The pions are the lightest hadrons, composed of u and d quarks, that form a triplet of two charged

pions (π±) and a neutral pion (π0). The π0 can decay electromagnetically to two photons, with a

lifetime of (8.4 ± 0.6) · 10−17 seconds[1]. The π± cannot decay to two photons - charge would not

2The scale of QCD is set by ΛQCD = 217+25
−23 MeV [1]. “Small” and “large” energies are small or large with respect

to ΛQCD.
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Figure 1.1: The variation of αs with energy [1].
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Figure 1.2: The Feynman diagram for the decay of π+.

be conserved - and are observed to have much longer lifetimes of (2.6033± 0.0005) · 10−8 seconds[1].

The longer lifetime of the π± with respect to the π0 indicates that the force responsible for the decay

is weaker than the electromagnetic force. This force is creatively known as the weak force.

The weak interaction is quite different from the strong and electromagnetic interactions in that

it couples only to left-handed particles. The field Ψ can be decomposed into a left-handed field

ΨL = 1
2 (1 − γ5)Ψ and a right handed field ΨR = 1

2 (1 + γ5)Ψ. This (1 − γ5) structure is known as

the V −A (vector-axial vector) form of the weak current. The weak interaction also couples quarks

of different flavors. For example, in the decay π+ → µ+νµ, shown in Figure 1.2 the weak current

couples the u to the d quark. The weak decay K+ → µ+νµ is quite similar with the replacement

d → s. The weak interaction apparently also couples quarks of different generations. Such decays

are observed to be suppressed relative to intra-generational decays. For example, the D0 decays to

K−X, where X is anything, 53% of the time while it decays to K+X only 3% of the time[1]. These

decays D0 → K±π∓ are illustrated in Figure 1.3. In the case D0 → K−π+ the c quark decays to a

s quark (same generation) while for the case D0 → K+π− the c quark decays to a d quark (different

generation), accounting for the difference.

There are also weak neutral currents, mediated by the exchange of a Z0. At low energies,
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Figure 1.4: The leptonic left-right production cross section asymmetry as measured by two experi-
ments at LEP [5].

much less than MZ , the electromagnetic current dominates these processes. However, at energies

near MZ these weak neutral current processes become important and the weak neutral current

and the electromagnetic currents interfere. This phenomena was extensively studied at the Large

Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC). Figure 1.4 shows the

forward-background production asymmetry for the process e−e+ → ℓ−ℓ+. A purely electromagnetic

process would be totally symmetric, the skewing of the distribution is caused by interference with

the Z0.

Another striking difference between the weak interaction and the electromagnetic or strong in-

teractions is that the field quanta are massive. For the case of QED or QCD the gauge symmetry

dictated that the photon and the gluons are massless. Massive gauge bosons suggest that the sym-

metry of the weak interaction is inexact - that the Lagrangian and the physical vacuum do not

obey the same symmetry. This is the case for a spontaneously broken symmetry. Furthermore, the

interference of the electromagnetic and neutral current processes suggest a unification of the electro-

magnetic and weak interactions. This “electroweak” interaction undergoes a spontaneous symmetry

breaking to the observed weak interactions and the symmetry of QED.
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Spontaneous Symmetry Breaking

The symmetry breaking pattern that is consistent with the observed phenomenology of the weak and

electromagnetic interactions is SU(2)L × U(1)Y → U(1)EM . Before considering this more complex

case, I would like to illustrate a spontaneously broken symmetry in two more simple cases.

First I consider a Lagrangian for a doublet of real scalar fields, φ:

φ =

(
ϕ1

ϕ2

)
(1.9)

L =
1

2
(∂µφ)2 − V (φ) (1.10)

with

V (φ) =
1

2
m2φ2 +

1

4
λ(φ2)2. (1.11)

This Lagrangian has a global SO(2) symmetry:

φ =

(
ϕ1

ϕ2

)
→

(
cosθ sinθ

−sinθ cosθ

) (
ϕ1

ϕ2

)
. (1.12)

If m2 > 0 the potential V (φ) is minimized by φ0 =

(
0

0

)
. The vacuum remains invariant to SO(2)

transformations as in Equation 1.12. However, for the case m2 = −µ2 < 0 the potential is minimized

by fields that satisfy:

φ2
0 = ϕ2

1 + ϕ2
2 = µ2/λ = v2. (1.13)

With m2 < 0 the potential has a shape similar to the bottom of a wine bottle. The vacuum now

consists of a continuum of states of degenerate energy. By picking a vacuum state:

φ0 =

(
0

v

)
(1.14)

and re-defining φ in terms of the fields π(x) and σ(x):

φ0 =

(
π(x)

σ(x) + v

)
(1.15)

the Lagrangian can we re-written in terms of the new fields π and σ:

L = (∂µπ)2 + (∂µσ)2 − µ2σ2 − µ
√

λπ2σ − µ
√

λσ3 − 1

4
λπ4 − 1

2
λπ2σ2 − 1

4
λσ4 − 1

4
µ4/λ (1.16)

This Lagrangian is no longer invariant under SO(2) transformations. The symmetry is only apparent

in the couplings of the π and σ fields, which depend on only two parameters, µ and λ. Also notice that

only the σ field is massive with mass m2
σ = 2µ2. The σ field is associated with radial oscillations

about the ground state with the massless π field is associated with tangential oscillations. The
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massless particle associated with the π is a Goldstone boson.

Goldstone’s theorem states that such massless particles result from breaking a continuous sym-

metry. For a Lagrangian that is symmetric under N -dimensional rotations (SO(N)), spontaneous

symmetry breaking results in one massive σ field and N − 1 massless Goldstone bosons – one Gold-

stone boson for each broken generator.3 The new Lagrangian is symmetric under (N−1)-dimensional

rotations (SO(N − 1)).

Of course the weak interaction is mediated by massive gauge bosons - the W± and the Z0 - while

the photon remains massless. According to Goldstone’s theorem, this type of particle spectrum can

not result from a broken global symmetry. However, the Higgs mechanism for locally invariant gauge

theory does supply a phenomenologically viable particle spectrum.

A simple example of the Higgs mechanism can be constructed by modifying the Lagrangian of

Equation 1.10, this time for a complex scalar field φ(x) = 1√
2
(ϕ1+ıϕ2), to be locally gauge invariant:

L = |(∂µ + ıeAµ)φ|2 − V (φ) − 1

4
FµνFµν . (1.17)

The Lagrangian is invariant under the U(1) transformations of Equations 1.4 and 1.5. Again when

m2 = −µ2 < 0 the symmetry will be spontaneously broken. The potential is minimized when:

φ∗
0φ0 =

1

2

µ2

λ
=

v2

2
. (1.18)

As in the previous example, by picking a vacuum state φ0 = 1√
2
v the field can be redefined in terms

of oscillations about this vacuum:

φ(x) = eıeθ(x)/v 1√
2
(ρ(x) + v). (1.19)

With this redefinition the θ field is the massless Goldstone field, corresponding to the one broken

generator, and the ρ field has a mass m2
ρ = 2µ2. So far this case is identical to the previous one.

In this case, however, a gauge transformation may be freely made. By choosing α(x) = −θ(x)/v

and transforming according to Equations 1.4 and 1.5 the complex scalar field φ becomes:

φ(x) → φ′(x) =
1√
2
(ρ(x) + v) (1.20)

and the gauge field A becomes:

Aµ(x) → A′
µ(x) = Aµ(x) +

1

ev
θ(x). (1.21)

The Lagrangian for these transformed fields contains a mass term for both the ρ field and the gauge

field A where m2
ρ = 2µ2 as before and mA = ev = eµ√

λ
. The freedom of the gauge transformation

allows for the undesirable θ field to be gauged away and causes the appearance of a massive gauge

boson.

3The group SO(N) has
N(N−1)

2
generators.
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Electroweak Unification

The theory of electroweak symmetry breaking with the simplest scalar sector was developed by

Glashow, Weinberg and Salam. In this model the initial symmetry is SU(2)L × U(1), with four

generators and four massless gauge fields.

While in QED and QCD the left- and right-handed fermions transform under the same rep-

resentation of U(1) and SU(3), respectively, this is not generally required of a gauge theory. To

accommodate the observation that the weak interaction couples only to left-handed fermions, the

left-handed fermions are grouped into doublets under SU(2). The left- and right-handed fields

transform as:

ΨL → exp(ıgτaα(x)a + ıg′Y β(x))ΨL (1.22)

and

ΨR → exp(ıg′Y β(x))ΨR. (1.23)

Where

τa =
1

2
σa (1.24)

are the generators of SU(2) and the σ matrices are the Pauli matrices. The quantity Y is the

hyper-charge. The hyper-charge is assigned so that Q = τ3 + 1
2Y where Q is the electromagnetic

charge. The hypercharge assignments of the fermions as summarized in Table 1.3.

SU(2) Representation Hypercharge

(
u
d

)

L

+ 1
6

uR + 2
3

dR − 1
3

(
νe

e

)

L

− 1
2

νR 0

eR −1

Table 1.3: Summary of representation of the first generation fermions under SU(2) and their hyper-
charge. The same holds for the second and third generations.

Then the gauge-invariant Lagrangian is given by:

L =
∑

i

Liıγ
µ(∂µ − ıgτaAa

µ − ıg′Y Bµ)Li +
∑

j

Riıγ
µ(∂µ − ıg′Y Bµ)Rj −

1

4
FA

µνFAµν − 1

4
FB

µνFBµν

(1.25)
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where

Li =

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

,

(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
ντ

τ

)

L

(1.26)

and

Ri = uR, dR, cR, sR, tR, bR, νe
R, e, νµ

R, µ, ντ
R, τ. (1.27)

The field tensor FA
µν contains an additional term, as in Equation 1.8, because the generators of

SU(2) do not commute.

At this stage a mass term for the gauge fields is still forbidden by the gauge symmetry. The

scalar which breaks the symmetry is a doublet:

φ =

(
φ+

φ0

)
(1.28)

where φ+ and φ0 are complex-valued scalar fields. The Lagrangian for the scalar sector has the

usual form:

L = (Dµφ)†(Dµφ) − V (φ†φ) (1.29)

where V (φ†φ) = − 1
2µ2φ†φ + 1

4λ(φ†φ)2 as in Equation 1.11. The symmetry breaking proceeds as

before when µ2 > 0 and the potential is minimized when φ†φ = 1
2

µ2

λ = 1
2v. The field φ0 is chosen

as:

φ0 =

(
0

v/
√

2

)
. (1.30)

Now three of the generators are broken: τ1, τ2, and the combination τ3 − 1
2 . The combination

Q = τ3 + 1
2Y remains unbroken. With the three broken generators come three massless Goldstone

bosons. Proceeding as in the previous case for the broken local U(1) symmetry the field φ is

parameterized as:

φ =
1

1
(ρ(x) + v)exp(

ı

v
[τ1θ1(x) + τ2θ2(x) + (τ3 − Y )θ3(x)])

(
0

1

)
. (1.31)

The massless θ fields can be gauged away by choosing:

−→α = −1

v
(θ1, θ2, θ3) (1.32)

and

β =
1

v
θ3. (1.33)

In this gauge the Lagrangian has three massive gauge bosons. The fields A1
µ and A2

µ have masses

m2
A1,2 = 1

4g2v2. The linear combinations:

W±
µ =

1√
2
(A1

µ ∓ ıA2
µ) (1.34)
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with masses:

m2
W± =

1

4
g2v2 (1.35)

are identified with the W± bosons, the carriers of the weak charged current interaction. The third

massive field is:

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ) (1.36)

with mass:

m2
Z0 =

1

4
(g2 + g′2)v2 (1.37)

and is the Z0 boson, the carrier of the weak neutral current interaction. The final massless field,

the photon field, is orthogonal to the Z0:

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ). (1.38)

Equations 1.36 and 1.38 may be written in matrix form as:

(
Z0

µ

Aµ

)
=

(
cosθw −sinθw

sinθw cosθw

) (
A3

µ

Bµ

)
(1.39)

where:

cosθw =
g√

g2 + g′2
, sinθw =

g′√
g2 + g′2

. (1.40)

The angle θw is the weak mixing angle. At tree level the masses of the W± and Z0 are related by

mW± = mZ0cosθw. The covariant derivative of Equation 1.29 may be rewritten in terms of the W±,

Z0 and A fields as:

Dµ = ∂µ − ı
g√
2
(τ+W+

µ + τ−W−
µ ) − ı

1√
g2 + g′2

(g2τ3 − g′2Y )Z0
µ − ı

gg′√
g2 + g′2

(τ3 + Y )Aµ (1.41)

where τ± = τ1 ± ıτ2. The coupling of the photon field of Equation 1.41, gg′√
g2+g′2

, is identical to e.

The Higgs Mechanism

In the Standard Model of the electroweak interactions it is the Higgs field that causes the symmetry

breaking - the ρ(x) field in the above section is replaced by the Higgs field H(x)- and the Higgs

boson is the associated particle. The mass of the Higgs bosons is then mH = 2µ2 = 2λv2. The

vacuum expectation value, v, is known to be 247 GeV [1], but the value of λ (the Higgs self-coupling)

is not known because the Higgs has not yet been observed.

The Yukawa Interaction

Because the left- and right-handed fermions do not transform under the same representation of

SU(2), fermion mass terms of the form mΨΨ = m(ΨLΨR + ΨRΨL) are forbidden under the elec-

troweak gauge symmetry. Of course, the fermions are in fact massive, with the top quark being very
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massive, so the electroweak gauge theory must incorporate massive fermions in some way.

In the Standard Model of the electroweak interactions the mass terms for the fermions arise via

the Yukawa interaction, where the Higgs field couples the left and right handed fermions according

to:

LY ukawa = − 1√
2
λf (H(x) + v)(FRFL + FLFR) (1.42)

where F is either a lepton or a quark and λf is known as the Yukawa coupling for the fermion. Now

the mass of each fermion is given by mf = 1√
2
λfv. Note that given the known values for v and the

fermion masses, that the top quark is the only fermion with the a Yukawa coupling of order one.

Why this is so is an open question in the Standard Model - one may suspect that all fermions should

have Yukawa couplings of order one. In this way the careful study of the top quark can provide a

probe of the physics in the Higgs sector.

The Cabibbo Kobayashi Maskawa (CKM) Mixing Matrix

The Yukawa Lagrangian in Equation 1.42 is gauge invariant under the electroweak gauge transfor-

mation but it does not follow from any gauge principle. It is possible to write a Yukawa interaction

that is gauge invariant and mixes the generations:

Lquark
Y ukawa = − 1√

2
Λu

ij(H(x) + v)(ui
Rui

L + ui
Lui

R) − 1√
2
Λd

ij(H(x) + v)(d
i

Rdi
L + d

i

Ldi
R) (1.43)

where ui is an up-type quark and di is a down-type quark. Under the assumption of zero neutrino

mass, there is no such Lagrangian for the lepton sector.

The eigen-fields of the Yukawa Lagrangian are fields with definite mass and diagonal mass ma-

trices. These fields are related to the fields of Equation 1.43 by unitary transformations. In other

words, there is a change of basis from the eigen-fields of definite mass to the flavor eigen-fields of

the weak interaction. The neutral-current interactions remain unchanged by the change of basis.

However, now the charged-current interaction couples quarks of different generations, as in the decay

D0 → K+π−. The mixing is traditionally ascribed to the down-type quarks such that:




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 (1.44)

where the di′ quarks are the flavor eigen-fields. The 3 × 3 unitary mixing matrix is known as the

Cabibbo Kobayashi Maskawa (CKM) matrix. Not all elements of the CKM matrix have been directly

probed by experiment. However, the unitarity of the matrix puts constraints on the unmeasured

elements (for example, Vus). The allowed ranges of the elements, at the 90% confidence level are [1]:




0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045

0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044

0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992


 . (1.45)
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Figure 1.5: The leading order diagrams for tt production at the Tevatron.

The matrix is approximately diagonal, as expected by the dominance of same generation charged-

current decays over different generation charged-current decays.

1.3 tt Production and Decay

1.3.1 tt Production at the Tevatron

At the Tevatron protons collide with anti-protons at a center of mass energy of 1.96 TeV. Top quarks

are overwhelming produced in strong interactions. The leading order diagrams which contribute to

tt pair production are shown in Figure 1.5. To quantify the production of tt pairs, an experimentalist

must measure a quantity that has a sound theoretical interpretation. I will discuss this quantity -

the cross section - in detail next.

Collider experiments are fundamentally scattering experiments - two beams of particles collide

and then scatter elastically or inelastically, depending on the interaction of the particles. The cross

section, which has units of area, measures the “size” of the target. For example, in the hard scattering

of two billiard balls the cross section is πR2, the entire cross sectional area of the balls interact in

the collision - nothing happens outside of a radius of R.

The cross section in a pp collision is not so intuitive. In a high energy environment such as

the Tevatron the protons and anti-protons can scatter inelastically, producing new particles as in

pp → tt, in addition to the elastic scattering pp → pp. The total inclusive cross section is the sum

of all the possible elastic and inelastic scattering processes. The exclusive cross section for a process

such as pp → tt can be thought of as the probability for a tt pair to be produced in a pp collision.

Figure 1.6 shows the cross sections for many exclusive processes of interest at the Tevatron. So, for

example, production of a W is three orders of magnitude more likely than the production of a tt pair,
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Figure 1.6: The theoretical and measured cross sections for various processes of interest at the
Tevatron. Plot courtesy of Mark Neubauer.

while Higgs production, for a Higgs boson mass of 160 GeV/c2, is about an order of magnitude less

likely than tt production. I will discuss how the unlikely tt events are isolated in detail in Chapter 4.

The cross section for a process is related to the number of events of that type by:

σ =
N∫
Ldt

(1.46)

where
∫
Ldt is the integrated luminosity of the experiment.4 In practice, detectors do not usually

offer complete coverage and certain selection cuts are made so the Equation 1.46 is modified to:

σ =
N

ε
∫
Ldt

(1.47)

where ǫ gives the efficiency of the detector and the particle selection cuts that are made. I will return

to this factor later in Chapter 4. In high energy experiments cross sections are usually measured

in barns. One barn is 10−24cm2, a unit which is much too large for tt production, where the cross

section is on the order of picobarns [pb].

4Luminosity is measured in 1/[Area] · [Time] so the integrated luminosity has units of 1/[Area].
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Figure 1.7: The pdf of the proton, as given by the CTEQ5L [6] dataset, for a Q2 of 1600 GeV2.

The cross section is related in the invariant amplitude for a process, M by:

dσ =
| M |2

F
dQ (1.48)

where F is the flux of the particles and dQ is a phase space factor. M is calculated by following the

Feynman rules for the contributing diagrams. I will not reproduce those here. Figure 1.5 gives the

diagrams for qq → tt and gg → tt.

Of course, it is not possible to collide individual quarks and gluons -at the Tevatron protons collide

with anti-protons. Because the center of mass energy of the Tevatron is in the regime where the

quarks and gluons behave as quasi-free particles, the cross section is factorized into the contribution

from qq and gg. These cross sections are convoluted with the parton - collectively quarks and gluons

are called partons - distribution function (PDF) of the proton and anti-proton. The PDF gives the

distribution of the proton’s momenta among its constituent particles - the quarks, the gluons which

hold them together and the qq pairs which pop in and out of the vacuum (the “sea” quarks). PDFs

are calculated from the combination of vast amounts of high energy physics data. There are many

collaborations dedicated to this endeavor and the exact details are worthy of a dissertation. The

PDF of the proton, as calculated by the CTEQ collaboration, is given in Figure 1.7. The total cross
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Figure 1.8: The variation of the tt production cross section with top mass. The data point indicates
the combination of CDF measurements of the top quark mass and tt production cross sections.

section for pp → tt production is then given by:

σtt =
∑

i,j

∫
dxidxjfi,p(xi, Q

2)fj,p(xj , Q
2)σ̂ij(ij → tt) (1.49)

where xi is the fraction of momenta carried by the proton, xj the fraction of the anti-proton, and

the hat notation refers to the underlying partonic process.

The total exclusive cross section for tt pair production depends on the mass of the top quarks.

The reason for this is simple - a heavier top is harder to produce. For a top quark with a mass

of 175 GeV/c2 the theoretical tt cross section is about 6.7 pb - with some variation depending on

the PDF set and renormalization scale used [7]. The dependence of the cross section with mass is

illustrated in Figure 1.8. The cross section changes by ±1 pb for each ±5 GeV/c2 change in the top

quark mass.

A differential cross section, such as dσ/dMtt, contains additional important information. The

theoretical interpretation is obvious from Equation 1.48. All of phase space is integrated over, except

for a region of invariant mass, dMtt. The experimental interpretation of Equation 1.47 is modified

to:
dσi

dMtt

=
N i

εi∆i
M

tt

∫
Ldt

(1.50)

where the superscript i indicates a bin of the Mtt distribution. If there was a massive particle X

that strongly coupled to the top quark it would be seen as a resonance or distortion in dσ/dMtt in

the region of MX . The exact nature of the resonance or distortion would depend on the mass of

particle, its width, coupling to the top, and any interference with the SM. It is possible to imagine

a scenario where such a process would not change the integrated cross section to an appreciable

degree, only the differential cross section. In this way differential distributions provide a unique

window to non-Standard Model physics.
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1.3.2 Top Decay

The extremely heavy top quark has very short lifetime of approximately 10−24 seconds, which is

short enough that it decays before it hadronizes [1]. The top quark is unique in this respect. As free

quarks are never found, the top quark supplies the only probe of the behavior of bare quarks.

The top quark decay is dominated by the decay t → Wb as the CKM element Vtb is nearly 1. The

b quark will then hadronize to a B meson or baryon. The B hadrons will continue to decay, via a

b → Xc or b → Xu process. The former decay is preferred, according to CKM matrix. However, Vcb

is not a diagonal element so the b decay is somewhat suppressed. This contributes to the relatively

long lifetimes of the B hadrons, most are approximately 1.5 ps [1]. This characteristic of the B

hadrons is exploited to identify them, as I will discuss in detail in Chapter 4. The W daughter

of the top decays to either a lepton and its associated anti-neutrino or a qq′ pair. tt events are

classified according to the decays of the two W± bosons. When both W± bosons decay hadronically

the event is an “all jet” event. When both W± bosons decay leptonically the event is a “dilepton”

event. When one W± decays leptonically and the other hardonically the event is a “lepton plus

jets” event. I will return to these various classes of events in Chapter 4.

1.4 The Top Quark in Physics Beyond the Standard Model

The Standard Model of electroweak symmetry breaking succeeds in explaining the masses of the W±

and Z0 bosons and the generation of fermion masses, but suffers many drawbacks. First, the Higgs

sector and the required non-zero vacuum expectation value which breaks the symmetry do not arise

from first principles. Second, a great deal of fine tuning is required to maintain the renormalizability

of the field theory and stabilize the Higgs boson mass. Third, the theory does not explain in any

fundamental way the strength of the Yukawa couplings between the Higgs boson and the fermions

- recall that the Yukawa interaction itself does not arise from any gauge principle but rather only

obeys the gauge symmetry. Finally, while the Standard Model prefers a light Higgs boson [8], it

remains undiscovered. The current best fit Higgs mass, using a global fit to all of the precision

electroweak data, is 87+36
−27 GeV/c2, as shown in Figure 1.9, which is well within the reach of current

experiments.

Because the top quark is the only (known) fermion with a mass near the electroweak scale, it

plays a special role in many theories of physics beyond the Standard Model (BSM). A large variety

of models exist where the top plays either a direct or indirect role in the generation of the masses

of the W±, Z, and fermions [9]. Here I will only focus on a subset of these models that have been

the focus of the most experimental scrutiny.

Just as the symmetry group SU(2)L×U(1) is broken to the U(1) symmetry of the QED, leading

to the generation of massive gauge bosons, many BSM theories propose that the SM is an effective

low energy theory that results from the breaking of extended gauge groups. This leads to additional

massive gauge bosons - and additional scalar Higgs bosons. Many of these theories predict a Z0-like

boson called the Z ′ [10]. For example, in topcolor-assisted technicolor models an additional U(1)

group couples preferentially to the third generation quarks. In these technicolor models, the Higgs
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Figure 1.9: The best fit Higgs mass from a global fit to precision electroweak data, assuming the
SM theory [8].

doublet which breaks the symmetry is not an elementary scalar field, but rather a condensate of

tt pairs that dynamically breaks the electroweak symmetry [11]. Regardless of the specifics of the

model, a Z ′ which couples strongly to the top quark will result in a resonance in the invariant mass

spectrum of the tt pairs. A search in the channel Z ′ → tt is most sensitive to those Z ′ bosons which

do not have large branching ratios to leptons. Such a Z ′ is “leptophobic” and is seen as a narrow

resonance in the tt invariant mass spectrum.

In other models with tt condensation the third generation of quarks participates in a new strong

gauge interaction [12]. The new extended gauge group is U(1) × SU(2)L × SU(3)1 × SU(3)2. The

symmetry is broken to the SM group U(1) × SU(2)L × SU(3), leaving a color octet of massive

gauge bosons called “colorons.” These colorons couple preferentially to top quarks. In contrast

to the narrow resonances indicative of a leptophobic Z ′, the colorons interfere with the SM gluons

and produce broad distortions to the invariant mass spectrum of tt pairs. Another theory with

a new strong coupling is the “chiral color” model [13]. In this model the extended gauge group

is U(1) × SU(2)L × SU(3)R × SU(3)L. When broken to the SM QCD interaction, a color octet

of massive bosons called “axigluons” result. While both colorons and axigluons are spin-1 color

octet particles, they have different parity quantum numbers. The processes would be most easily

distinguished by studying the forward-background asymmetry in tt production [14].

In the ultimate description of the SM as a low-energy effective field theory all of the forces of

the SM are unified in a single large gauge group where the strong, electromagnetic and weak forces

are indistinguishable. If gravity is to be included, the unification occurs at the Planck scale, MPl,
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of 2 · 1018 GeV. A persistent theoretical puzzle is the large gap between MPl and the scale of

electroweak symmetry breaking - this is the so-called “hierarchy puzzle.” Various theories introduce

extra dimensions to space-time to solve the hierarchy problem. In the Randall-Sundrum (RS) model

a single warped extra dimension accounts for the large hierarchy [15]. In the original RS model the

SM fields are confined to a single brane while Kaluza-Klein (KK) gravitons (the quanta of gravity)

propagate in the bulk space. These gravitons would be seen in the tt invariant mass spectrum as

a series of resonances. In extended RS models the SM fields also propagate into the bulk space.

In such models the KK excitation of the gluon would couple strongly to top quarks and result in

resonances in the tt invariant mass spectrum near the mass of the KK-gluon [16].

In summary, a large class of BSM theories predict distortions to the tt invariant mass spectrum.

The distortions may be narrow resonances such as a Z ′ or a broad interference as for a coloron.

The goal of this analysis is to remain as model-independent as possible when analyzing the Mtt

spectrum. In this way I maintain sensitivity to the many BSM effects which are possible.
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Chapter 2

The Fermilab Tevatron and the

CDF II Detector

2.1 Introduction

The Fermi National Accelerator Laboratory (FNAL), or Fermilab, has been the home of several

great discoveries in particle physics - the bottom quark was discovered at Fermilab in 1977, the top

quark in 1994-1995 and the τ neutrino in 2000. Fermilab is home to the Tevatron and the two large

collaborations devoted to studying pp collisions, the Collider Detector at Fermilab (CDF) and DØ

collaborations; two neutrino experiments, MiniBooNE and Minos; and is home for many theoretical

physicists. In this chapter I will focus on the Tevatron and the CDF II detector. These are huge

and complicated machines that cannot be fully described in a few pages. This chapter is meant to

be an overview that highlights the important components for this analysis.

2.2 The Tevatron

The protons and anti-protons are produced and accelerated to their final energies of 980 GeV by

a series of accelerators [17]. Figure 2.1 is a diagram of the Fermilab accelerator chain. Proton

production begins in the Cockcroft-Walton pre-acclerator. Hydrogen gas is ionized to create H−

ions that are accelerated to an energy of 750 keV. The ions then pass onto the Linac, a linear

accelerator about 500 feet long which accelerates the ions to an energy of 400 MeV. The electrons

are stripped from the ions by passing the hydrogen through a carbon foil and the resulting protons

enter the Booster for further accelerator. The Booster accelerates the protons to 8 GeV before

passing them onto the Main Injector.

The Main Injector performs many functions. First, it accelerates protons to 120 GeV and sends

them to the Anti-proton Source for anti-proton production. Anti-protons are produced by colliding

protons with a nickel target. Anti-protons are collected from the resulting spray of particles by using

a lithium lens. It takes about 105 protons to make an anti-proton. The anti-protons are sent to the

Accumulator for temporary storage before passing to the Recycler Ring in the Main Injector. Once

enough anti-protons have been produced they are accelerated to 150 GeV before injection to the

Tevatron.

The Tevatron is a superconducing synchrotron accelerator. Protons and anti-protons are injected

in bunches, with 36 bunches of about 1012 protons each and 36 bunches of about 1011 anti-protons in

the 4 mile Tevatron ring. The protons and anti-protons are accelerated to 980 GeV by the Tevatron,
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Figure 2.1: The Fermilab Tevatron accelerator chain.

Figure 2.2: The integrated luminosity delivered and recorded by the CDF II detector.

producing collisions with a center of mass energy of 1.96 TeV. The beams collide once every 396 ns

at two interactions points - the CDF and DØ detectors. The Tevatron is the only proton-anti-proton

collider in the world today. Soon the Tevatron will loose the distinction of also being the world’s

highest energy collider to the LHC, which will collide protons with protons at a center of mass energy

of 14 TeV. Due to many improvements that were made to anti-proton production and storage in Run

II of the Tevatron, record-setting instantaneous luminosities of 3 · 1032cm−2s−1 have been achieved.

The total integrated luminosity delivered to, and recorded by, CDF is shown in Figure 2.2. This

analysis uses 2.7 fb−1 of integrated luminosity, collected between March 2002 and April 2008.

2.3 CDF II Detector

The CDF II Detector is actually a series of many subdetectors that work together to study the

pp collisions. All together the CDF II detector is about three stories tall and weighs nearly 5000

tons. At the core of the detector is a 1.4 T superconducing solenoid. A precision tracking system
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Figure 2.3: An elevation view of the CDF II detector.

is immersed in the magnetic field, providing detailed tracking information for charged particles.

Outside the magnetic field a series of calorimeters measure the energies of electrons, photons and

hadrons. At the outermost edges of the detector a series of muon detectors are used for muon

identification. An elevation view of the CDF II detector is given in Figure 2.3.

The CDF II detector is nearly azimuthally and forward-background symmetric. It is described

by a cylindrical coordinate system (z,φ,η). The z axis points in the direction of the proton beam.

The φ angle is the azimuthal angle and the variable η, the pseudorapidity, is related by the polar

angle θ by:

η = −ln(tan(
θ

2
)) (2.1)

For highly relativistic particles η is approximately equal to the rapidity, Y = tanh−1(pz/E), and

they are identical for massless particles. Pseudorapidity transforms linearly under Lorentz boosts - in

other words, differences in η are invariant. The CDF II detector is fully described in Reference [18].

I will highlight the most important subsystems for the analysis here.

2.3.1 Tracking Systems

Tracking detectors are key for identifying the charge and momentum of particles created in the

pp collisions. The tracking detectors, consisting of silicon detectors closest to the beam and a

drift chamber immediately outside the silicon detectors, are immersed in the solenoid field. The
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solenoid field, B, is a uniform 1.4 T field which runs parallel to the beamline in the z direction.

Charged particles traveling in the magnetic field follow helical paths where the curvature of the

helix, C = 1/(2R) where R is the radius, is related to the transverse momentum, pT , of the particle

by:

pT =
0.3B

2C
(2.2)

The high precision silicon detectors located closest to the beam allow for the reconstruction of

secondary vertices used in the identification of heavy flavor quarks. I use this secondary vertex

reconstruction to identify b quarks from top decays in this analysis.

The innermost tracking detectors are silicon strip detectors. The Silicon Vertex Detector (SVX)

covers the range |η| < 2.0 and 1.5 cm < r < 10.7 cm. The strips are arranged in a barrel geometry

with 5 layers of strip detectors. The strips are double-sided where one strip provides axial measure-

ments parallel to the beamline while the other side provides stereo measurements. For three of the

five layers the stereo layer is at 90◦ to the beamline while for the remaining two layers have a small

stereo angle if 1.5◦. The stereo information allows for the extrapolation of the z position of tracks.

The Intermediate Silicon Layers (ISL) provide additional coverage out to a radius of 28 cm. The

ISL consists of three double-sided layers of strip detectors, where one side provides axial information

and other side has a small stereo angle. Two of these layers are located at high η to provide tracking

in the forward region. There is an additional layer of silicon strips placed directly on the beamline,

called L00. These detectors are specially designed to withstand the high radiation on the beamline.

The silicon detectors are semiconductor devices that detect charged particles when they ionize the

detector medium to create electron/hole pairs. The electrons and holes drift to opposite electrodes,

inducing a signal. In order to detect the signal over the background of free charge carriers in pure

silicon, the silicon is doped to create a charge depletion region that is further enchanced by the

application of a reversed bias voltage. The CDF II silicon detectors consist of lightly doped n-type

silicon sandwiched between a highly doped n-type electrode and lightly-doped p-region. Silicon

detectors achieve excellent spatial resolution because the ionization energy required to induce a

signal is relatively low - the spatial resolution of the CDF silicon detectors is about 15 µm [28].

Silicon detectors can also be read-out rapidly, allowing the tracking information to be used in trigger

decision. I discuss the CDF II trigger system in detail in Section 2.3.5.

The Central Outer Tracker (COT) is an open-cell drift chamber which provides additional track-

ing information in the region |η| < 1.0 and 40 cm < r < 137 cm . The COT consists of gold-plated

tungsten sense wires arranged in eight superlayers, which alternate between axial and stereo orien-

tations, where the stereo angle is 2◦. The superlayers provide up to 96 measurements of the charged

particle position. The superlayers are enclosed in a chamber which is filled with a 50/50 mixture

of argon and ethane gasses. An electric field is created by a voltage applied to sense (anode) wires

and cathode field panels. Charged particles passing through the detector ionize the gas. The freed

electrons create an avalanche of charges when they encounter the high electric field near the sense

wires, which is registered as a signal by the wire. The time between the collision and the arrival

of the electrons at the wire, the drift time, is converted to a distance of closest approach to the

wire. The path of the charged particle in three dimensions is reconstructed from the distance of
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closest approach to the axial and stereo wires. The transverse spatial resolution of the COT is

approximately 180 µm, with a transverse momentum resolution of σpT
/p2

T = 0.0017 [GeV/c]−1 [28].

2.3.2 Calorimetry

Calorimeters, which measure the transverse energy of jets, electrons and photons, lie outside the

solenoid. The calorimeters are also used to calculate the missing transverse momentum associated

with neutrinos, which is called the “missing ET ,” or /ET , because it is derived from calorimeter

information. The electromagnetic (EM) calorimeters are the innermost calorimeters. The EM

calorimeter is a lead-scintillator sandwich, which is divided between a central (|η| < 1.1) and forward

(1.1 < |η| < 3.6) region. In this analysis I use only electrons identified with the Central EM

(CEM) calorimeter. The CEM is supplemented with a shower maximum detector (CES) which

measures transverse shower profiles for finer position resolution. The hadronic (HAD) calorimeter,

immediately outside the EM calorimeter, is a steel-scintillator sandwich with a central (CHA) and

a forward region. The calorimeters are segmented into towers, where the segmentation varies with

position. In the central region each tower covers 0.11 in η and 15◦ in φ.

The EM and HAD calorimeters function using the same basic principle. The lead or steel

functions as an absorber and radiator which alternates with layers of scintillator. Electromagnetic or

hadronic cascades from the interaction of particles with the absorber material cause the scintillating

material to emit light which is collected and measured by photomultiplier tubes. The resolution of

the CEM is 14%/
√

ET while the CHA has a resolution of 50%/
√

E [28].

2.3.3 Muon Systems

Muons are characterized by the fact that they are nearly minimum ionizing particles which pass

through the detector without losing substantial energy in the calorimeters. Muons are detected by a

series of drift chambers which lie along the outer edges of the detector, outside the calorimetry. The

detectors are comprised of layers of single wire drift chambers. Muon candidates are detected by the

same mechanism described above for charged particle tracking in the COT. The charged candidates

ionize a 50/50 mixture of argon and ethane gasses. The ionization electrons move to the sense wire,

creating an avalanche that is detected by the wire. The drift time is converted to a drift velocity,

giving the distance of closest approach of the muon candidates to the wire.

The Central Muon Detector (CMU) covers the region |η| < 0.6 immediately outside the hadronic

calorimeter. It consists of 4 layers of single wire drift chambers. The CMU provides measurements

in the r−φ plane as well as in the z direction. The Central Muon Upgrade (CMP) is located in the

same η region as the CMU, behind additional steel shielding. Like the CMU, the CMP consists of 4

layers of single wire drift chambers. However the CMP does not provide z position measurements.

Muon candidates with hits in both the CMU and CMP are called CMUP muons and have lower rates

of misidentification than muon candidates without hits in both the CMU and CMP. The Central

Muon Extension (CMX) covers the region 0.6 < |η| < 1.0. The CMX consists of between 4 and 8

layers of single wire drift chambers and also provides z position measurements of muon candidates.

Muons candidates are identified by matching the track segments in the chambers to tracks in the
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COT. Candidates must also deposit energy in the calorimeters that is consistent with a minimum

ionizing particle.

2.3.4 Luminosity Measurement

Luminosity is measured using two Cherenkov Luminosity Counters (CLC) positioned at small an-

gles to the beamline in both the proton and anti-proton directions. The CLC detectors are thin

conical counters consisting of three concentric layers around the beam pipe filled with isobutane gas.

The CLC counters detect the Cherenkov radiation light emitted by the charged particles from the

collision as they pass through the isobutane gas.1 The light is collected and then registered by a

photomultiplier tube.

The CLC counters measure the average number of inelastic pp interactions per bunch crossing,

µ. The instantaneous luminosity, L is given by:

L =
µ · f
σin

(2.3)

where f is the rate of pp bunch crossings and σin is the total inelastic pp cross section. There is a 6%

uncertainty associated with the luminosity measurement, with almost equal contributions coming

from the uncertainty associated with the acceptance and operation of the CLC counters and the

calculation of the inelastic pp cross section.

2.3.5 Trigger

CDF cannot record events at the 2.5 MHz collision rate. Furthermore, many events are uninteresting

and not worth recording at a cost of 250 kB per event. CDF uses a three level trigger system which

filters events to a rate of about 100 Hz for permanent storage. The system is pipelined to process

events in real time with minimal deadtime.

The level 1 trigger consists of dedicated hardware which receives information from the calorime-

ters, muon detector system and the COT. The level 1 buffer is 14 collisions deep with a decision

time of 5.5 µs. After the level 1 decision, the event rate is about 20 kHz. The level 2 trigger again

consists of dedicated hardware. The level 2 system receives information from level 1, as well as

silicon tracking information and input from the shower maximum detector. Level 2 consists of 4

buffers with a decision time of about 30 µs. After passing level 2, the event rate is about 1 kHz.

The level 3 trigger consists of dedicated CPUs which perform a simplified version of the offline event

reconstruction. This final stage of the trigger reduces the event rate to about 100 Hz. A schematic

of the trigger system is shown in Figure 2.4.

The data used in this analysis were collected using a trigger which looks for a single high pT

electron or muon. The trigger is described in more detail in Chapter 4.

1Cherenkov radiation is emitted when a charged particle passes through a medium at a speed greater than the
speed of light in that medium.
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Figure 2.4: A schematic of the CDF II trigger system. The clock cycle shown is 132 ns, but the
Tevatron currently operates at 396 ns.
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Chapter 3

Monte Carlo Models for Signal and

Background

3.1 Introduction

The importance of Monte Carlo event generation and detector simulation in high energy physics

experiment cannot be overstated. As soon as QCD reaches a non-perturbative regime - for example,

when quarks hadronize into jets - analytical calculations become impossible. Leptons also emit

bremsstrauhlung radiation, which can become tedious to calculate. Furthermore, the response of

the detector to particles cannot be calculated and must be modeled by simulation programs. In this

chapter I will describe the various Monte Carlo event generators and detector simulations programs

used in this analysis.

3.2 Monte Carlo Event Generation

All of the Monte Carlo event generators used in this analysis are leading-order generators. The

problem of event generation can be factorized into several pieces [20, 19]. First there is the generation

of the hard process, for example qq → tt. These processes can be calculated exactly to lowest order

in perturbation theory because QCD is still in the regime where the quarks and gluons can be treated

as quasi-free particles. Second there is the emission of initial and final state radiation in the form of

extra gluons radiated by the incoming or outgoing partons. Such processes depend largely on the

momentum transfer of the process and can be treated probabilistically. Third there is the decay of

heavy objects in the event, such as heavy quarks and the electroweak bosons. Whether or not this

happens on a time scale shorter than that for QCD hadronization determines the complexity of the

process. Finally there is the hadronization of the final state partons. Here perturbative QCD is

of no help so only phenomological models apply. The exact details of the model for hadronization

vary depending upon the Monte Carlo generator used. I will not go into the details here, but only

point out that comparing the output of different models is an important systematic check for any

analysis which relies upon Monte Carlo event generation. Some Monte Carlo generators are capable

of the simulation of the hard process, initial and final state radiation, heavy object decay and

hadronization. Other Monte Carlo programs generate only the hard process - the “matrix-element”

generators - and need other programs to perform the remaining steps.
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3.2.1 Signal Event Generation

The primary tt event sample is generated with the PYTHIA program [19], version 6.216. The CTEQ5L

parton distribution function [6] is used for the incoming protons and anti-protons. The PYTHIA

implementation produces stable heavy (b and c) quarks which are decayed with EvtGen [23]. When

I refer to PYTHIA this implies that EvtGen and CTEQ5L have been used for the heavy quark decay and

parton distribution functions, respectively. An alternative sample is generated with the HERWIG pro-

gram [20], version 6.510, in place of PYTHIA for systematic studies of the effect of the hadronization

model. This sample also uses EvtGen and CTEQ5L parton distribution functions.

3.2.2 Background Event Generation

The Monte Carlo programs used to model various background processes are summarized in Table 3.1.

Both ALPGEN [22] and MadEvent [21] are leading order matrix element generators. They are used to

generate the hard process, which is then passed to PYTHIA for decay and hadronization. The ALPGEN

version used is 2.10′, with PYTHIA version 6.325 for decay and hadronization. The MadEvent version

used is version 4.

Process Monte Carlo Event Generator
Diboson PYTHIA

W+jets ALPGEN+PYTHIA

Z+jets ALPGEN+PYTHIA

Single top MadEvent+PYTHIA

Table 3.1: Summary of Monte Carlo programs used to generate events for different classes of back-
ground events.

The proper generation of the W and Z plus jets background events requires extra care. The

following samples are generated with ALPGEN:

• W + Np, N=0,1,2,3,4

• Wbb + Np, N=0,1,2

• Wcc + Np, N=0,1,2

• Wc + Np, N=0,1,2,3

where Np refers to the number of additional partons in the final state.

There is an overlap in phase space between events that are generated as, for example, W + Np

and radiate an extra jet with hadronization to produce N + 1 jets and events that are generated as

W + (N + 1)p. The same holds for events which hadronize with 2 extra jets and events generated

as W + (N + 2)p, etc. This overlap is removed during generation by requiring that every parton is

matched to a jet and that the number of jets equals the number of partons. Events with the highest

generated parton multiplicites are allowed to have extra jets. There is a second overlap in heavy

flavor content which must also be removed. For example the 2 partons in a W +2p event may be bb,
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which overlaps with the Wbb sample. This overlap is removed after event generation by requiring

that events have the proper heavy flavor content. To model the W or Z plus jets data, the samples

are combined according to a luminosity weighted average. The integrated luminosity of a sample i

is given by ni
gen/σi

Gen where σi
Gen is the cross section generated by ALPGEN and ni

gen is the number

of events generated for sample i. Each sample is weighted by σi
Gen/ni

gen to give the same luminosity

for each and then added together.

3.3 CDF Detector Simulation

The CDF detector simulation is described in [24]. The simulation uses the GARFIELD [26] program

for modeling of the COT, the GFLASH program [27] for modeling of the calorimeters and the GEANT3

program [25] for modeling of the remaining detector subsystems. The simulation is run-dependent -

it takes into account those periods (run numbers of data) where certain subsystems of the detector

were not used and the acceptance of the silicon detectors changed. After detector simulation the

events are passed through the same offline software as real data.
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Chapter 4

tt Event Selection

4.1 Introduction

As I discussed in Chapter 1 the top quark decays via t → W+b nearly 100% of the time. For tt pairs,

then, the daughters are W+bW−b. The W± decays to electrons, muons and taus with a branching

ratio of 10.68 ± 0.12% (for each lepton flavor) and decays hadronically with a branching ratio of

67.96 ± 0.35% [1]. The possible final states of the two W bosons are summarized in Table 4.1.

e±ν µ±ν τ±ν hadrons
e∓ν 1.14 1.14 1.14 7.25
µ∓ν 1.14 1.14 1.14 7.25
τ∓ν 1.14 1.14 1.14 7.25

hadrons 7.25 7.25 7.25 46.18

Table 4.1: Possible final states of W+ and W− tt daughters. The numbers are the percentage of the
decays with that final state.

The final state of the tt decay always has at least two jets, from the hadronization of the the b and

b quarks. Depending on the decays of the W bosons, there are between zero and four additional jets.

The number of leptons in the final state varies from zero in the all-hadronic case to two leptons and

their associated neutrinos in the dilepton case. Each decay channel has distinct physics backgrounds

with the all-hadronic channel having very large SM backgrounds from generic QCD jet production

and the dilepton channel having small SM backgrounds. At the same time, the all-hadronic decay

is the most likely while the dilepton decay is the least likely. The compromise, where one W decays

leptonically and other decays hadronically, with final state bbℓνℓqq
′ is the “lepton+jets” channel.

The final state consists of a lepton, neutrino and four jets, two of which are b-jets. The lepton+jets

channel has long been the “golden channel” for tt physics, and most precision results come from this

channel. As is customary, I do not consider events where the lepton is a τ because τ -leptons are

difficult objects experimentally, although there is some small acceptance for τ decays to electrons

and muons. For the remainder of this dissertation the symbol ℓ indicates only the charged leptons

of the first two generations and νℓ refers to their associated neutrinos.
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4.2 Event Selection

The event signature for the lepton+jets decay of a tt pair is four energetic jets, a lepton with large

transverse momentum and a large transverse momentum imbalance from the undetected neutrino.

Extra jets may appear in the event due to initial or final state radiation, and I allow for extra jets in

my selection1. To enhance the purity of the sample, jets from heavy flavor decays are identified, or

“tagged.” My event selection criteria are summarized in Table 4.2. For the calculation of dσ/dMtt,

as defined in Equation 1.50, the data is binned according to the value of Mtt in each event. I choose

bins with widths approximately equal to the resolution of the CDF detector. The resolution depends

on the value of Mtt but is on average 50 GeV/c2. In the leading edge and tails of the distribution

the bins are wider to account for the smaller number of expected events in those bins. The binning

of Mtt used in this analysis is given in Table 4.3. In the next section I describe the trigger that

is used in the collection of data and follow with a discussion of the reconstruction of each physics

object in the event.

Jets ≥ 4 with ET > 20 GeV and |η| < 2
Lepton CEM, CMUP or CMX lepton with ET > 20 GeV
/ET > 20 GeV
B-tagging ≥ 1 tight SecVtx tag

Table 4.2: Summary of event selection used in this analysis.

Bin Mtt [GeV/c2]
1 0 - 350
2 350 - 400
3 400 - 450
4 450 - 500
5 500 - 550
6 550 - 600
7 600 - 700
8 700 - 800
9 800 - 1400

Table 4.3: Binning of Mtt used in this analysis.

4.2.1 Trigger

The selection of events in data begins with the trigger. The CDF trigger system was described

in Chapter 2. The triggers used in this analysis require an electron or muon with high transverse

momentum [28]. The trigger requirements for the electron path are:

Level 1 An XFT track with pT > 8 GeV/c matched to a trigger tower in the CEM with ET > 8 GeV

and the ratio of hadronic to electromagnetic energy is less than 0.125.

1Also it is possible that jets may be lost due to geometric or kinematic requirements, but I do not allow for fewer
than four jets in this analysis
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Level 2 The energy of neighboring trigger towers with ET > 7.5 GeV is added to the single trigger

tower at level 1. The total transverse energy deposit must be greater than 16 GeV.

Level 3 A track with pT > 9 GeV/c matched to an energy cluster in three adjacent towers with

ET > 18 GeV with ratio of hadronic to electromagnetic energy less than 0.125. Also the lateral

shower profile of the cluster must be less than 0.4 and the distance between the extrapolated

track position and the CES measurement in the z-direction must be less than 10 cm.

The trigger requirements for the muon path are:

Level 1 An XFT track with pT > 4 GeV/c matches to a muon track segment with pT > 6 GeV/c

for CMUP muons, or a track with pT > 8 GeV/c matched to a segment with pT > 6 GeV/c

for CMX muons.

Level 2 There are no additional requirements at level 2.

Level 3 A track with pT > 18 GeV/c matched to a track segment in the muon chambers within

18 cm in r − φ for all muon types and within 20 cm in z for CMUP muons only.

The efficiency of the triggers is measured in data [29]. A high purity sample of Z0 → ℓ−ℓ+ events

are selected. One lepton is required to be the trigger lepton, the other lepton is the “probe lepton”

and it must have the opposite charge of the trigger lepton. The invariant mass of the two leptons

must be within the Z0 mass window. The efficiency of the trigger is the ratio of the probe leptons

which pass the trigger to the total number of probe leptons. The efficiencies of the triggers for the

various lepton types are given in Table 4.4. The quoted efficiencies are a luminosity-weighted average

of the efficiencies measured for various run periods for the complete 2.7 fb−1 of data analyzed here.

CEM Electrons CMUP Muons CMX Muons
0.964 ± 0.005 0.888 ± 0.008 0.912 ± 0.010

Table 4.4: Efficiencies of the various triggers used in this analysis.

4.2.2 Lepton Identification

Offline lepton identification imposes tighter requirements on the electron or muon. More information

on these requirements can be found in Reference [28]. The requirements for electron identification

are summarized in Table 4.5. The electron must have a COT track with pT > 9 GeV/c pointing to

a cluster of energy in three adjacent towers in pseudorapidity in the CEM with ET > 20 GeV. The

ratio of hadronic to electromagnetic energy in the cluster, Ehad/Eem, must be small. The lateral

shower profile Lshr - the distribution of energy in adjacent CEM towers - must be consistent with

electron test beam data. Likewise the CES shower profile in the z view must be consistent with test

beam data, as quantified by χ2
strip. The values ∆x and ∆z are the distances between the extrapolated

COT track and the CES shower profile in the r − φ and z views, respectively. The requirement on

∆x is signed to allow for breamsstrahlung photons that are emitted as the lepton passes through
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the detector. These distances are required to be small. The ratio of electron’s energy to momentum,

E/p, which should be close to one, must be less than 2, except for very high pT electrons. These

high momentum electrons lose momentum by emitting collinear photons. The electrons must also

be well isolated. The quantity isolation is defined as the ratio of additional transverse energy in a

cone of radius R =
√

(δη)2 + (ηφ)2 = 0.4 around the cluster to the energy of the cluster. Photon

conversions are explicitly vetoed by looking for two oppositely charged tracks with a small opening

angle between them.

Property Requirement
ET ≥ 20 GeV
Ehad/Eem ≤ 0.055 + 0.00045·E(GeV)
Lshr ≤ 0.2
χ2

strip ≤ 10
|∆z| ≤ 3.0 cm
Q · ∆x ≥ −3.0 cm, ≤ 1.5 cm
E/p ≤ 2.0 or pT > 50 GeV/c
Isolation ≤ 0.1
Photon Conversion Veto

Table 4.5: Requirements for electron identification.

The efficiency of these electron identification requirements is measured in Z → e−e+ data using

the trigger and probe lepton technique of the trigger efficiency measurement. The efficiency is

0.789 ± 0.004. For this analysis systematic differences between lepton identification in data and

Monte Carlo simulation are important as they alter the efficiency of the event selection. These

differences are corrected for by a scale factor, the ratio of the identification efficiency in data to

Monte Carlo simulation, which is measured to be 0.981 ± 0.005. The efficiency of the conversion

veto, not accounted for in these numbers, is 1.00 ± 0.014.

The offline muon identification requirements are summarized in Table 4.6. Muons must have

COT track with pT ≥ 20 GeV/c that extrapolates to a track segment in the muons chambers.

The energy in the hadronic and electromagnetic calorimeters must be consistent with the energy

deposition of minimum ionizing particles. The distances in x - the drift direction - between the

extrapolated COT track and the track segment in the the muon chambers must be small. Muons

with segments in the CMU must also have segments in the CMP, and vice versa, these muons are

called CMUP muons. The distance of closest approach of the track to the beam line in the transverse

direction, d0, must be small. This requirement rejects hadrons which decay in flight and muons from

cosmic rays. Isolation is defined similarly to the electron case - the ratio of transverse energy in

cone of radius 0.4 around the track to the muon transverse momentum - and it must be small.

Cosmic ray muons are explicitly vetoed by using timing information from the COT. Events where

a charged particle track travels toward instead of away from the center of the detector are rejected.

The efficiency of these muon identification cuts is 0.829± 10116 for CMUP muons and 0.893± 0.006

for CMX muons. Again a scale factor must be applied to account for differences muon identification

in data and Monte Carlo simulation. This scale factor is measured to be 0.921 ± 0.007 for CMUP
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muons and 0.966 ± 0.011 for CMX muons. The efficiency of the cosmic ray veto, not included, is

1.00 ± 0.010.

Property Requirement
pT ≥ 20 GeV
Ehad ≤ max(6, 6 + 0.0280(p − 100)) GeV
Eem ≤ max(2, 2 + 0.0115(p − 100)) GeV
CMU|∆x| ≤ 3.0 cm
CMP|∆x| ≤ 5.0 cm
CMX|∆x| ≤ 6.0 cm
|d0| ≤ 0.02(0.2) cm with (without) silicon tracking
Isolation ≤ 0.1
Cosmic Ray Veto

Table 4.6: Requirements for muon identification.

To remove backgrounds from diboson (WW , WZ and ZZ) production in association with jets

events exactly one high pT lepton is required. To further reduce the background from Z decays,

any event where the high pT lepton and a second softer lepton (with less stringent identification

requirements) form an invariant mass within the Z mass window is removed.

4.2.3 Track and Primary Vertex Reconstruction

For all lepton candidates, the COT track must pass certain quality requirements. The track must

have at least three axial and three stereo COT superlayer track segments. Each segment must

have at least seven attached hits out of a possible total of twelve hits. Additionally, the track is

constrained to the beam position in the transverse plane.

The z position of event is determined by the z position of the primary vertex. I discuss vertex

reconstruction in more detail in Section 4.3. Events are required to have a z position within 60 cm

of the center of the detector. However, the luminosity is measured for the entire luminous region.

A correction factor, measured in data to be 0.967 ± 0.003, is applied to account for the different

regions for the measured luminosity and the accepted events.

4.2.4 Jet Reconstruction and Uncertainties

A jet is seen in the detector as a large number of tracks pointing to a deposition of energy in

the calorimeters. The four-momenta of jets measured by the calorimeters, pjet, must be corrected

for various detector and physics effects. This correction determines the “jet energy scale.” The

procedure used by CDF to correct jets is described in detail in Reference [30]. The transverse

momenta of the underlying partons, pparton
T , is related pjet

T through a series of corrections:

pparton
T = (pjet

T × Cη − CMI) × CAbs − CUE + COOC = pparticle
T − CUE + COOC . (4.1)

The corrections are:
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Cη is an η-dependent correction which makes the calorimeter response uniform with respect to the

polar angle.

CMI corrects for multiple interactions - when more than one pp interaction occurs per bunch cross-

ing.

CAbs is an absolute scale correction to the momentum of a particle jet from the calorimeter mo-

mentum. The momentum of the particle jet is the sum of the momenta of all hadrons, leptons

and photons within the jet cone. A particle jet is independent of the CDF detector and can

be compared to theory.

CUE corrects for the underlying event - contributions to the jet energy which are not related to the

parent parton. These contributions include interactions with the non-interacting (spectator)

partons of the proton/anti-proton and initial state radiation.

COOC corrects for energy that falls outside the jet cone.

The correction is derived according to the transverse momenta of the jet, but is applied to all

components of the jet four-momenta.

Jets are clustered by applying an iterative cone algorithm. The cone size, R, is defined as:

R =
√

(ηtower − ηjet)2 + (φtower − φjet)2 (4.2)

where the center of the jet is (ηjet, φjet) and (ηtower, φtower) refer to the calorimeter towers. Towers

with ET > 1 GeV form seed towers. Additional towers are added, up to the maximum radius R.

The clustering is iterated, merging and splitting jets, until the jets are stable - meaning a single

tower does not contribute to more than one jet and the list of towers in a jet does not change. The

jet corrections and their associated uncertainties depend on the size of the cone. In this analysis I

use jets with R = 0.4.

η Dependent Corrections

The central region of the calorimeter is better understood and instrumented than the forward regions.

This correction scales the energy of jets outside the region 0.2 < |η| < 0.6 to jets inside this

region. The correction is derived by balancing the transverse momentum of jets in dijet events. The

transverse momentum of a “trigger jet” in the central region is balanced with a random “probe jet.”

The ratio of probe to trigger jet pT , β, is shown in Figure 4.1. The η-dependent corrections are then

1/β. The quantity β is calculated in different jet pT bins and applied according to jet pT and η.

The deviation of the dijet balance from one is taken as an uncertainty on the correction. Further

uncertainties are assessed by varying the selection of dijet events and the fitting procedure. The

uncertainty as a function of jet η for various jet pT bins is shown in Figure 4.2.

Corrections for Multiple Interactions

For events with more than one pp interaction per bunch crossing, extra energy not associated with

the primary interaction is included with the reconstructed jet energy if the final states overlap.
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Figure 4.1: The ratio of probe to trigger jet pT [31].
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Figure 4.3: The average transverse energy in a cone of radius R=0.4 in a minimum bias data
sample [31].

This energy is subtracted from the measured jet energy. The correction is derived as a function of

the the number of vertices reconstructed in the event in data taken with a minimum bias trigger.

The minimum bias trigger’s only requirement is that an inelastic pp interaction has occurred. The

correction is made by subtracting the average transverse energy in a random cone of size R in the

data from the jet transverse energy. The value of this correction is shown in Figure 4.3.

The correction is cross-checked in samples with different topologies. The uncertainty is dominated

by the limited statistics of the samples, and is taken to be 15%. The fractional uncertainty as a

function of jet pT is shown in Figure 4.4.

Absolute Energy Scale Corrections

The absolute correction is the final correction needed to transform a calorimeter jet to a particle

jet. The particle jet consists of all particles - hadrons, leptons and photons - within the jet cone.

The correction is derived entirely from Monte Carlo simulation and is limited by the accuracy of the

simulation. For a distribution of jet transverse momenta associated with a fixed value of pparticle
T , the

absolute jet energy is defined as the most probable value of pjet
T . The absolute scale is the difference

between the energy of the particle jet and the corrected jet energy. The scale applied, along with

the uncertainty, is shown in Figure 4.5.

Underlying Event and Out of Cone Corrections

In order to reconstruct the parton momentum, further corrections to pparticle
T are needed. The first

correction, for the underlying event, removes energy associated with particles in the hard interaction

that are not the parent parton, such as initial state radiation. The out of cone corrections accounts for

energy losses due to the finite size of the jet cone. These corrections are derived entirely from Monte

Carlo simulation, using the same method as the absolute energy scale correction. The uncertainties

are assessed by varying parameters in the simulation. The correction and uncertainties for the
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Figure 4.4: The uncertainty of the multiple interaction correction as function of jet pT [31].
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Figure 4.5: The absolute jet energy scale correction with uncertainties are a function of jet pT [31].
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Figure 4.6: The underlying event jet energy scale correction with uncertainties are a function of jet
pT [31].
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Figure 4.7: The out of cone jet energy scale correction with uncertainties are a function of jet pT [31].

underlying event is shown in Figure 4.6 and for the out of cone correction is shown in Figure 4.7.

In practice the out of cone and underlying event corrections are not usually applied, and are only

used for the evaluation of systematic uncertainties. These corrections are derived from generic dijet

Monte Carlo simulation, in other words, no particular physics process is assumed. If the energy of

the parent parton is needed, process specific corrections are usually applied. This is the approach

that I take. I select jets which have been corrected for η-dependence, multiple interactions and the

absolute energy scale. The corrected transverse energy of these jets must be greater that 20 GeV.

The total uncertainty on the jet energy scale as a function of jet pT is shown in Figure 4.8.

The fractional uncertainty on the jet energy scale is smallest at high jet pT , approximately 3%, and

largest a low jet pT , approximately 10%. For an analysis that relies as heavily on jet quantities

as mine, the uncertainty on the jet energy scale is a dominant source of uncertainty in the final

analysis. However, this uncertainty can be reduced by using the well-known W mass to constrain
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Figure 4.8: The total uncertainty on the jet energy scale as a function of jet pT [31].

the jet energy scale in hadronic W decays. This technique was first used in [40] as a way to reduce

the uncertainty on the top quark mass from the jet energy scale.

4.2.5 Missing Transverse Energy Reconstruction

The missing transverse energy, /ET , is associated with the undetected neutrino in the lepton+jets

event. It is defined as the magnitude of the vector −
∑

i(ET,icosφi, ETisinφi) where the sum runs

over calorimeter towers. For events with muons, the missing energy is corrected for the small amount

of energy that the muon deposits in the calorimeter towers. The /ET vector is also corrected for the

effects of the jet energy scale corrections applied to the jets. My event selection requires events with

/ET > 20 GeV.

4.3 Heavy Flavor Tagging

The data selected according to the event selection criteria described above will be contaminated by

non-tt processes. The largest background is W± bosons produced in association with jets. I will

discuss in detail the composition of the data sample in the next chapter. Generally the tt signal

can be distinguished from the background processes by the heavy flavor in the final state. There

are several techniques that can be used to identify heavy flavor content in jets. As I discussed

in Chapter 1, the b-hadrons have long lifetimes, on the order of picoseconds. The b-hadrons then

travel several millimeters in the detector before decaying. The secondary vertex (SecVtx) tagging

algorithm looks for displaced secondary vertices, with respect to the primary event vertex, to identify

the long-lived hadrons [32]. Another technique that can used to identify heavy flavor content is to

tag the semileptonic decays of the b-hadrons. This technique is called soft lepton tagging (SLT).

SLT tagging with muons is described in detail in [34]. The SecVtx method, which I use, has the

highest efficiency for tagging tt events of the commonly used algorithms. In the lepton+jets channel,

requiring at least one SecVtx tag reduces the background contamination of the data sample by about
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95% while reducing the amount of tt signal by less than half.

Accurate reconstruction of secondary vertices requires precise reconstruction of the event primary

vertex, the origin of all prompt tracks in the event. Vertices are reconstructed from only well

measured COT and silicon tracks. For events with more than one identified vertex, the vertex that

is closest to the high momentum lepton is the primary vertex. The transverse position of the primary

vertex is resolved to 10 − 32µm, depending on the exact event topology.

The SecVtx algorithm works on a per-jet basis. Good tracks within the jet cone are selected

according to the quality of the silicon tracking information and the reduced χ2 of the track fit. Jets

with at least two good tracks are considered “taggable” and are analyzed by the SecVtx algorithm.

The algorithm uses two passes to find secondary vertices in the taggable jets. The first pass looks for

at least three tracks with pT > 0.5 GeV/c and d0/σd0
> 2.5, one of which must have pT > 1 GeV/c,

and attempts to reconstruct a vertex. If the first pass fails the second pass attempts to reconstruct

a two track vertex of tracks with pT > 1 GeV/c and d0/σd0
> 3.

If a secondary vertex is found, the two-dimensional decay length of the secondary vertex, Lxy, is

calculated. Lxy is the projection of a vector which points from the primary vertex to the secondary

vertex onto the jet axis in the r−φ view. A cartoon of a displaced secondary vertex and the distance

Lxy is shown in Figure 4.9. Lxy is signed relative to the jet direction. If the absolute difference in φ

between the jet axis and secondary vertex vector is less than 90◦ the tag is positive, if the difference

is more than 90◦ the tag is negative. The jet is tagged if |Lxy/σLxy
| > 3 (“tight” SecVtx tags). For

reference, the “loose” SecVtx tags require |Lxy/σLxy
| > 7. The uncertainty on the measured Lxy,

σLxy
, is typically 190 µm. Secondary vertices from heavy flavor generally decays have positive tags.

Secondary vertices which result from mis-measured tracks tend to have negative tags. My event

selection requires at least one jet with a positive SecVtx tag.

The efficiency to tag b-jets as a function of jet ET in a Monte Carlo simulation of tt events is

shown in Figure 4.10. A correction factor is applied to account for differences in tagging in data and

Monte Carlo simulation. This factor is measured to be 0.95 ± 0.05.

4.4 tt Signal

I reconstruct the invariant mass of the tt event, Mtt, by combining the four-momenta of the lepton,

jets and missing transverse energy (the z-component is set to zero). I use an unfolding technique,

which I will describe in Chapter 7, to correct Mtt to the true (partonic) tt invariant mass, M true
tt

.

The differential cross section, as given in Equation 1.50, is then calculated in bins of M true
tt

.

4.4.1 Acceptance

The event selection described above is applied to a PYTHIA simulation of tt events. The efficiency of

the selection is needed in each bin of M true
tt

for the calculation of dσ/dMtt. The acceptance in each

bin, Ai, is given by the ratio
Ni

sel

Ni
gen

. The acceptance in each bin of M true
tt

is given for each lepton

type in Table 4.7. The quoted uncertainties reflect the statistical uncertainty from the finite size of

the simulated event sample. This raw acceptance needs to be corrected for many effects to obtain
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Figure 4.9: A cartoon jet with a displaced secondary vertex [35].
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the event selection efficiency:

1. There is no trigger in the Monte Carlo simulation. The value of Ai in each bin is multiplied

by the appropriate trigger efficiency for the lepton type, as given in Table 4.4.

2. Likewise the Ai must be multiplied by the efficiencies of the cosmic and conversion vetoes, as

given in Section 4.2.2 because there are not applied in the Monte Carlo simulation.

3. The value of Ai must be corrected for differences in lepton identification efficiency in data and

Monte Carlo. Ai is multiplied by the appropriate lepton identification scale factors given in

Section 4.2.2.

4. The acceptance is corrected for the requirement that that |z| < 60 cm. The scale factor is

given in Section 4.2.3.

5. The acceptance is also corrected for the difference in tagging efficiency in data and Monte

Carlo as given in Section 4.3.

Bin Number all 1 2 3 4 5 6 7 8 9

CEM Leptons
Ai 0.017 0.010 0.015 0.017 0.018 0.019 0.019 0.019 0.020 0.015
σAi

3e-08 2e-06 8e-08 1e-07 2e-07 3e-07 6e-07 7e-07 2e-06 5e-06
CMUP Leptons

Ai 0.010 0.0068 0.0093 0.010 0.011 0.012 0.012 0.012 0.011 0.0091
σAi

2e-08 1e-06 7e-08 8e-08 1e-07 3e-07 5e-07 6e-07 2e-06 4e-06
CMX Leptons

Ai 0.0046 0.0029 0.0043 0.0047 0.0048 0.0052 0.0052 0.0054 0.0051 0.004
σAi

2e-08 8e-07 4e-08 5e-08 9e-08 2e-07 3e-07 4e-07 1e-06 3e-06

Table 4.7: Acceptances for events with CEM, CMUP and CMX leptons which pass the event selec-
tion. The bins are defined in Table 4.3.

After the raw acceptance has been corrected the efficiency of the selection in each bin, εi, is the

sum of the corrected acceptances for each lepton type. The values of εi are given in Table 4.8. The

selection efficiency is approximately 3%. The efficiency is lower in the very low and very high bins

of Mtt.

Bin Number all 1 2 3 4 5 6 7 8 9

CEM Leptons
εi 0.015 0.0088 0.013 0.015 0.015 0.016 0.017 0.017 0.017 0.013
σεi

8e-04 5e-04 7e-04 8e-04 8e-04 9e-04 9e-04 9e-04 9e-04 7e-04
CMUP Leptons

εi 0.0078 0.0051 0.0070 0.0078 0.0084 0.0088 0.0090 0.0090 0.0085 0.0068
σεi

5e-04 3e-04 4e-04 5e-04 5e-04 5e-04 6e-04 5e-04 5e-04 4e-04
CMX Leptons

εi 0.0037 0.0023 0.0034 0.0038 0.0039 0.0042 0.0041 0.0044 0.0041 0.0032
σεi

2e-04 1e-04 2e-04 2e-04 2e-04 2e-04 2e-04 3e-04 2e-04 2e-04
All Leptons

εi 0.026 0.016 0.023 0.026 0.027 0.029 0.030 0.030 0.030 0.023
σεi

9e-04 6e-04 8e-04 9e-04 1e-03 1e-03 1e-03 1e-03 1e-03 9e-04

Table 4.8: Event selection efficiency for events which pass the event selection according to lepton
type and Mtt bin. The bins are defined in Table 4.3.

43



4.4.2 Reconstruction of tt Events

For analyses that require complete kinematic information about the tt system, the reconstruction

of the top and anti-top four-momenta from the lepton, missing transverse energy, and jet four-

momenta in a lepton plus jets event presents challenges. This includes not only analyses of the Mtt

spectrum in tt events but also measurements of the top quark mass, the helicity of the W±, and the

forward-background asymmetry in tt production. This is true even in the absence of background.

The difficulties include:

The energy and momentum of the quarks must be inferred The b-quark daughters of the

tt pair and the light quark daughters of the hadronically decaying W are seen as jets in the

detector. The four-momenta of the quarks must be inferred from the four-momenta of the jets,

with large uncertainties, as I discussed in Section 4.2.4.

The z -component of the neutrino momentum is not measured The neutrino from the lep-

tonic W decay is detected as an imbalance in the transverse momentum measured in the

detector. The momentum imbalance in the z -direction, which points along the beam, cannot

be measured.

Missing energy resolution is generally poor The x and y components of the neutrino momen-

tum are identified with the x and y components of the missing transverse momentum. The

resolution of the missing transverse momentum suffers the same shortcomings of the jet energy

resolution. The resolution is also worsened by cracks in the calorimetry and non-instrumented

regions of the detector.

Extra jets not from top Jets in the event which do not originate from the tt pair are also prob-

lematic. For instance, the momentum of a jet radiated by the colliding quarks or gluons should

not be included in the momentum of the tt final state.

Loss of jets from top Likewise, the kinematic requirements on the jets can result in jets from top

being lost. For example, for a very energetic tt pair the jets will be highly boosted and may

merge. In this case less than four jets will be counted and the event is lost.

Also, though it is not required in an Mtt analysis2 the assignment of jets to quarks in a tt event is

ambiguous. If you assume that jets with b-tags have been identified correctly, there are six (two)

ways to assign the jets to quarks for events with one (two) b-tags. This presents an extra challenge

for cases where the assignment is required by the analysis technique. In this analysis I avoid the

combinatoric issue by calculating the event invariant mass.

2In a measurement of, for example, the top quark mass, it is necessary to identify which top decays to a b and
the leptonic W± and which top decays to a b and the hadronically decaying W± because the top and anti-top four-
momenta must be distinguished. In an M

tt
analysis it is not necessary to distinguish the four-momenta of the top and

anti-top. However, the resolution of the measurement can often be improved when the four-momenta are separated
because the invariant masses of the top and anti-top can constrain the invariant masses of their respective decay
daughters.

44



4.5 Data Sample

This analysis uses 2.7 fb−1 of data collected between February 2002 and April 2008. The number of

events passing the event selection, divided according to lepton type and jet bin, is shown in Table 4.9.

Lepton Type 1-jet 2-jets 3-jets 4-jets ≥ 5-jets
CEM 2208 1161 513 279 85

CMUP 1061 503 203 148 45
CMX 636 232 97 67 26
All 3905 1926 813 494 156

Table 4.9: The event counts after event selection according to lepton trigger type and jet bin. The
signal region is ≥ 4-jets, for a total of 650 events in 2.7 fb−1 of data.
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Chapter 5

Standard Model tt Backgrounds

5.1 Introduction

Non-tt processes which result in a final state similar to the lepton+jets state are backgrounds and

must be removed from the data sample in order to calculate dσ/dMtt. For the b-tagged final state

the dominant background is W boson production in association with jets which have heavy flavor

content. The next largest background is W boson production is association with jets that do not

have heavy flavor content, but have nonetheless been tagged. Such tags are called “mistags.” The

final large background is events that do not have a real W bosons. In these events the isolated

high pT lepton and large /ET signature from the leptonically decaying W has been faked by a mis-

measurement or a heavy flavor quark which decays semi-leptonically. These events are referred to

as “non-W” or QCD backgrounds. Finally there are many smaller backgrounds from electroweak

(EW) diboson production and single-top production.

Ideally the theoretical cross section for each of these processes would be calculated to a high

degree of precision and verified experimentally. Then the number of events for process X could be

obtained by inverting Equation 1.47:

NX = σX · ε ·
∫

Ldt. (5.1)

In reality the theoretical cross section for the largest W+jets backgrounds are only known to lowest

order in QCD. These lowest order calculations suffer from large uncertainties and cannot be used

the constrain the normalization of the W+jets backgrounds. Furthermore, tagging rates in Monte

Carlo simulation do not agree with tagging rates in data. Recall that a scale factor was needed

to correct the efficiency of the event selection for the tag rate difference in data and Monte Carlo

simulation. In Monte Carlo simulation the tagging rate is too high, so this factor was less than one.

At the same time, the rate of mistags in simulation tends to be too low so an alternative approach

is needed for this background as well. The non-W background presents its own challenges. It is not

clear how these events, where the leptonic W has been faked, should be modeled in Monte Carlo

simulation. Again an alternative approach is needed.

The technique used by CDF to calculate the tt backgrounds in the SecVtx tagged lepon+jets

sample is described in [32]. In this chapter I will review the method used to calculate the normaliza-

tions of each background. These results were obtained for the integrated tt cross section in 2.7 fb−1

of data [36]. I will conclude with a description of the Mtt distribution of the backgrounds.
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5.2 Normalization of the Backgrounds

The strategy of this background estimate is to use well-known quantities to constrain the W+heavy

flavor and mistag backgrounds. While the leading order QCD prediction for the normalization of

the W+heavy flavor production is largely uncertain, the fraction of W+heavy flavor events in the

W+jets sample, Fhf , is better modeled to leading order (by taking the ratio, many uncertainties

cancel). The number of tagged W+heavy flavor events is then:

NW+hf
tag = NW+jets

pretag · Fhf · ǫtag = NW+hf
pretag · ǫtag (5.2)

where ǫtag is the tagging efficiency:

ǫtag =
Ntag

Npretag
(5.3)

and NW+jets
pretag is the number of W+jets events in the sample before tagging (“pretag”). The pretag

sample has passed all event selection requirements except for the requirement for at least one tight

SecVtx tag. The number of mistags in data is, to first order, equal to the number of negative SecVtx

tags, N−. Then the number of mistags in the W+jets sample is given by the mistag rate, N−

Npretag
,

times the number of W+lf events:

NW+lf
tag =

N−
Npretag

· (NW+jets
pretag − NW+hf

pretag ) (5.4)

The missing piece in the above equation is the W+jets component of the pretag sample. NW+jets
pretag

is determined by removing from the total pretag sample the contributions from tt, electroweak

processes and non-W production:

NW+jets
pretag = Npretag − (N tt

pretag + Nnon−W
pretag + NEW

pretag). (5.5)

The background estimate proceeds by a sequential process as follows:

• The number of pretag events from electroweak processes is calculated according to the theo-

retical cross section for each process.

• The number of tt events present in the pretag sample is calculated according to the theoretical

cross section for a 175 GeV/c2 top quark mass.

• The fraction of non-W events, Fnon−W is measured, as I will described in Section 5.2.3, and

the number of non-W events in the pretag sample is given by Fnon−W · Npretag.

• The W plus heavy flavor content of the tagged sample is determined as described above.

• The mistag background is determined.

• The predictions for the electroweak, tt, and non-W backgrounds at tag level are determined

by adjusting the pretag predictions by the tagging efficiency for each process.
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The estimates are derived separately for each type of trigger lepton - CEM, CMUP or CMX -

and for different numbers of jets in the event. The one and two jet bins are background dominated

and serve as a control region for the background estimate. The integrated cross section measurement

is performed with events with ≥ 3 jets, while I select only events with ≥ 4 jets.

5.2.1 Electroweak and Monte Carlo Derived Backgrounds

Processes that result in the production of pairs of W and Z mimic the tt process when the one boson

decays to leptons and the over decays to jets. The third and fourth jets in the event are provided

by gluon radiation from the initial or final state quarks. These processes include WW , WZ, and

ZZ1 production, and are mostly rejected by the requirement of exactly one high pT charged lepton.

There is also a small amount of background from electroweak production of single top quarks. These

processes have well-known theoretical cross sections and the normalizations are calculated according

to Equation 5.1 where ε is the efficiency of the pretag event selection. The background from Z plus

jets production, where the Z decays to a pair of charged leptons, is included in these Monte-Carlo

derived backgrounds as well. This background is quite small as the events are required to pass a

Z veto, so the large uncertainty has little effect. The theoretical cross sections for each of these

processes are given in Table 5.1. I will collectively refer to all of these processes as electroweak

processes, with NEW
pretag events in the pretag sample and NEW

tag events in the tag sample.

Process Cross Section [pb]
t-channel single top 1.98 ± 0.08
s-channel single top 0.88 ± 0.05
WW 12.4 ± 0.25
WZ 3.96 ± 0.06
ZZ 1.58 ± 0.02
Z+jets 787.4 ± 50

Table 5.1: Cross sections used in calculation of Monte Carlo derived backgrounds. [33]

5.2.2 tt in the Pretag W+jets Sample

The pretag W+jets sample has a non-negligible tt component. For a 175 GeV/c2 top quark with

a theoretical cross section of 6.7 pb approximately one third of the ≥ 4 jets sample is comprised

of tt events. This creates a complication for the normalization of the W+heavy flavor and mistag

backgrounds as they depend on the composition of the pretag sample. A significantly different tt

cross section would alter the normalizations of these backgrounds. However this is a second-order

effect and my analysis is just not sensitive enough for this to be a concern. 2

1In the case of ZZ production either the /ET is faked for ZZ → ℓ+ℓ−jj or a jet in the event is misidentified as a
lepton for ZZ → ννjj.

2The current CDF combination of measurements of the integrated tt production cross section is 7.02±0.63 pb [37],
consistent with the theoretical expectation used in the background calculation.
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5.2.3 Non-W Background Production

Events which pass the event selection but that do not have a real W -boson will, on average, have

lower /ET because there is no real neutrino. In order to determine Nnon−W
pretag , the /ET distribution

in data (with no /ET cut) is fit for the fraction of non-W events so that the number of non-W

events in the high /ET signal region can be extrapolated from the number of non-W events in the

low /ET region. The pretag /ET distribution is modeled by templates for each contributing process.

The tt, W+jets, and electroweak processes are modeled by the Monte Carlo simulations described

in Chapter 3. The non-W template is constructed from a sample of “anti-electron” events. Anti-

electrons are electron candidates which pass all kinematic cuts but fail two of the five non-kinematic

cuts in Table 4.5. These events retain the kinematic properties of the real W events but are enriched

in QCD production.

5.2.4 W+heavy flavor Production

With the above pieces in place the W+jets content of the pretag sample is known. The fraction

of heavy flavor events in the W+jets sample is calculated from the Alpgen plus PYTHIA simulation

described in Section 3.2.2. The heavy flavor fractions are calculated separately for events with one

or two b-jets and one or two c-jets. The heavy flavor fractions and tagging efficiencies are given in

Table 5.2.

Jet Multiplicity 1-jet 2-jets 3-jets 4-jets ≥ 5-jets
Heavy Flavor Fractions [%]

1b 0.75 1.56 2.57 3.37 3.97
2b 0 0.94 1.88 3.01 4.36
1c 5.98 9.57 11.71 12.56 12.66
2c 0 1.55 3.43 5.73 8.08

Tagging Efficiencies
1b 30.8 33.2 35.1 36.4 40.6
2b 0 54.5 56.1 56.7 57.1
1c 6.9 8.2 9.4 11.0 13.3
2c 0 13.6 14.9 16.8 18.3

Table 5.2: Fraction of W+jets events with heavy flavor content (in percents), and the tagging
efficiency for the events.

The heavy flavor fractions measured in Monte Carlo simulation are corrected by a scale factor

for the difference in heavy flavor in data and Monte Carlo. The scale factor is measured in W+1-jet

data and extrapolated to the tt enriched signal region. There is a systematic uncertainty associated

with the extrapolation to the signal region. The heavy flavor content of the data is measured using

a neural network which discriminates between heavy and light flavor jets by combining the power

of several variables which differ in heavy and light flavor jets into one variable - the neural network

output. The variables include, for example, the mass and transverse momentum of the secondary

vertex and the significance of the Lxy measurement. The neural network output of the data is

compared to the output for light and heavy flavor jets in Monte Carlo simulation in Figure 5.1. The
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Figure 5.1: The output of the neural network used to calculate the fraction of heavy flavor in data [36]

fraction of heavy flavor is calculated by fitting the data based on these templates. The scale factor

is measured to be 1.5 ± 0.3 using this technique, meaning that the heavy flavor content of data is

underestimated by the Monte Carlo simulation by approximately 50%. Most likely this is due to

higher order effects that are not modeled in the leading order Monte Carlo simulation.

5.2.5 Mistag Production

The rate of negative SecVtx tags is parameterized by five jet variables:

• jet ET

• number of good SecVtx tracks

• jet η

• jet φ

• sum of all jet ET in the event.

This parameterization is derived is a high statistics sample of jet data and is cross-checked in

various jet samples. There is a small correction to the mistag rate for an asymmetry in the signed

decay length of the secondary vertices. The combined effect of long-lived light flavor jets with positive

tags and real heavy flavor jets with negative tags is an excess of positive tags. The correction factor

is 1.2 ± 0.1. The mistag rate as a function of jet ET is shown in Figure 5.2. The mistag rate is

between 1 and 2%, depending on jet ET . Because the mistag rate is so low it is extremely unlikely

that more than one jet in an event will be mistagged. Therefore the corrected number of negative

tags is a good estimate for the number of mistagged events.

5.2.6 Tagged Electroweak and non-W Backgrounds

The prediction for the tagged electroweak backgrounds is calculated according to Equation 5.1 where

ε is the efficiency of the tagged event selection. The tagged non-W prediction is obtained by fitting
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Process 1-jet 2-jets 3-jets 4-jets ≥ 5-jets

Pre-tag Data 272347 44868 7605 1686 383

Wbb 802.3 ± 244.6 498.0 ± 154.5 136.9 ± 43.3 32.3 ± 10.5 6.5 ± 2.5
Wcc 431.4 ± 135.2 219.6 ± 69.6 64.3 ± 20.7 16.8 ± 5.6 3.6 ± 1.4
Wc 1002.9 ± 314.4 260.0 ± 82.5 48.8 ± 15.7 8.9 ± 2.9 1.5 ± 0.6

Mistags 946.7 ± 143.6 310.2 ± 53.9 83.5 ± 17.2 18.9 ± 4.8 3.5 ± 1.6
Non-W 487.9 ± 146.4 356.4 ± 106.9 102.2 ± 30.6 20.9 ± 17.5 6.4 ± 6.0
WW 17.7 ± 2.3 44.1 ± 5.7 14.0 ± 1.8 3.5 ± 0.5 1.0 ± 0.1
WZ 9.0 ± 1.0 19.2 ± 2.2 5.1 ± 0.6 1.2 ± 0.1 0.3 ± 0.0
ZZ 0.7 ± 0.1 1.9 ± 0.3 1.0 ± 0.1 0.3 ± 0.0 0.1 ± 0.0

Z+jets 48.7 ± 6.7 36.3 ± 4.6 13.6 ± 1.7 3.3 ± 0.4 0.7 ± 0.1
Single Top (s-channel) 11.4 ± 1.2 42.0 ± 4.1 13.1 ± 1.3 2.8 ± 0.3 0.6 ± 0.1
Single Top (t-channel) 37.6 ± 3.3 52.4 ± 4.6 14.3 ± 1.2 2.8 ± 0.2 0.4 ± 0.0

tt̄ (6.7pb) 19.2 ± 2.7 154.9 ± 21.6 345.4 ± 48.0 358.6 ± 49.7 121.5 ± 16.8

Total Prediction 3815.5 ± 720.1 1995.1 ± 325.3 842.0 ± 99.1 470.3 ± 56.5 145.9 ± 18.5
Observed 3906 1926 813 494 156

Table 5.3: Predicted sample composition in each jet bin for 2.7 fb−1 of data. [36]
.

the tagged /ET distribution, using a tagged anti-electron template for the non-W modeling.

5.3 Data Sample Composition

The final estimate for the sample composition in each jet bin is given in Table 5.3. The prediction

agrees well within the uncertainties in the control 1- and 2-jet bins. In the signal region, the observed

number of events is consistent with the predicted backgrounds along with a tt signal with a total

integrated cross section of 6.7 pb.
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Figure 5.3: The expected Mtt distribution of the backgrounds. The signal distribution is shown for
reference.

5.4 Mtt Distribution of the Backgrounds

To reconstruct the Mtt distribution of the backgrounds, I use the same Monte Carlo simulations, or

data in the case of the non-W estimate, used to calculate the normalizations of the backgrounds.

Each process is normalized according to the expectation from Table 5.3. The resulting Mtt distribu-

tion, binned according to Table 4.3, is shown in Figure 5.3. For comparison I also show the expected

tt distribution on the same plot, normalized to the expectation in Table 5.3. The background Mtt

distribution is softer than the signal distribution, with nearly half of the background events in the

first bin of Mtt. In the presence of background, Equation 1.50 is modified to:

dσi

dMtt

=
N i

data − N i
bkg

εi∆i
M

tt

∫
Ldt

(5.6)

where N i
bkg is the expectation for the number of background events in bin i. The uncertainty on the

background normalization will be taken as a systematic uncertainty on dσ/dMtt.
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Chapter 6

A Review of Previous Results

6.1 Introduction

Both the CDF and DØ collaborations have studied the Mtt distribution for signs of new physics.

In this chapter I will give an overview of the results from Run 2 of the Tevatron. These results

also highlight the various techniques that can be used to study the Mtt spectrum. As I discussed in

Section 4.4.2, the kinematic reconstruction of tt events is complicated by many effects that ultimately

lessen the resolution on Mtt.

6.2 Searches for Narrow Resonances

The CDF collaboration has completed two complementary searches for narrow resonances in the

Mtt spectrum, using a maximum of 1 fb−1 of data. The searches are conducted in the lepton plus

jets decay channel of the tt pair. In each case the search is optimized for a narrow leptophobic Z ′

- which I discussed in Section 1.4 - with width ΓZ′ = 0.012MZ′ . Limits are set by using a binned

maximum likelihood technique, where the likelihood is a Poisson function for the number of events

in each bin of the Mtt distribution.

The first search uses the technique described in [38] which was originally developed for the

measurement of the top quark mass. The result, using 680 pb−1 of integrated luminosity, was

published in 2008 [39]. The invariant mass of the tt system is described by a probability distribution

for Mtt, given the set of measured three-momenta {−→k }:

P (Mtt | {
−→
k }) =

∫
P ({−→p } | {−→k })δ(Mtt − M true

tt
({−→p }))d{−→p } (6.1)

where {−→p } represents the three-momenta of the final state partons in the process pp → tt →
W+bW−b → qq′bℓνℓb and P ({−→p } | {−→k }) is the probability density which relates the measured

quantities {−→k } to the parton quantities {−→p }. P ({−→p } | {−→k }) is given by:

P ({−→p } | {−→k }) = π({−→p })T (
−→
j1 | −→p1)T (

−→
j2 | −→p2)T (

−→
j3 | −→p3)T (

−→
j4 | −→p4) (6.2)

where T (
−→
ki | −→pi ) are transfer functions which relate the measured momentum of jet i,

−→
ki , to the

momentum of parton i, −→pi , and π({−→p }) is the probability for observing a given tt parton-level fi-

nal state. Note that there is no transfer function for the lepton as the uncertainty on the lepton
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Figure 6.1: The distribution of Mtt obtained using the matrix element technique [39].

momentum is negligible compared to the uncertainty on the jet momentum. The unknown neu-

trino momentum is integrated out of the probability distribution, with no transfer function between

missing energy and the neutrino momenta. π({−→p }) is given by:

π({−→p })d3−→p1d
3−→p2d

3−→p3d
3−→p4 =

1

σ

∫ ∫
dxidxjfi,p(xi, Q

2)fj,p(xj , Q
2) ˆdσij(ij → tt). (6.3)

π({−→p }) is a normalized differential cross section where the differential cross section is given by a

convolution of the PDFs of the proton and anti-proton with the differential cross section of the

underlying process, as discussed in Chapter 1. The cross section, and thus the probability for a

particular final state, is given by the Standard Model matrix element for tt production and its

subsequent decay, so this technique is known as a “matrix element” method.

This technique requires that jets be assigned to the underlying partons as the quantity π({−→p })
depends on the final state. All possible final state assignments to jets are computed, and the final

probability distribution P (Mtt | {−→k }) is the sum of the probability distributions for each final

state assignment. This distribution peaks near the true (partonic) value of Mtt. The mean of the

distribution is taken to be the reconstructed value of Mtt for the event. The resolution achieved is

approximately 25 GeV/c2 when the correct final state assignment is chosen.

With this technique for reconstructing Mtt for each event, distributions of Mtt for the Z ′ signal

and Standard Model backgrounds, including tt, are made from Monte Carlo simulations of the

various processes. These distributions, or “templates,” are compared to the distribution of Mtt in

data. The data, along with the templates, is shown in Figure 6.1. The distribution is consistent

with the SM expectation so limits are set on the cross section for Z ′ production as a function of Z ′

mass.
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Figure 6.2: The observed and expected limits on Z ′ production obtained using the matrix element
technique [39].

The probability that the data agrees with a Z ′ signal with cross section σZ′ is assessed using a

likelihood technique. The likelihood, L(−→n | σZ′), is given by:

L(−→n | σZ′) =
∏

i

e−µi

µni

i

ni!
(6.4)

where

µi = σZ′AZ′TZ′i +
∑

j

NjTji. (6.5)

The subscript i runs over the bins; the subscript j runs over the SM backgrounds. AZ′ gives the

acceptance for the Z ′ signal and TZ′i (Tji) is the content in the ith bin of the normalized template

for the Z ′ signal (SM backgrounds). With a flat prior for the signal cross section, L(−→n | σZ′)

is the probability density for σZ′ . Cross section limits are calculated at the 95% confidence level

by integrating the likelihood up to 95% of the total area. The result is shown in Figure 6.2. Z ′

production is excluded at the 95% confidence level for leptophobic Z ′ with masses up to 725 GeV/c2.

The second result from the CDF collaboration, using 955 pb−1 of integrated luminosity, was also

published in 2008 [41]. Again the analysis method is based upon a technique developed for the top

quark mass measurement [40].

The kinematics of the tt system are constrained to the SM decay tt → W+bW−b → qq′bℓνℓb by
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Figure 6.3: The distribution of Mtt obtained using the χ2 reconstruction technique [41].

a χ2 minimization. The χ2 function is given by:

χ2 =
∑

i

(pi,fit
T − pi,meas

T )2

σ2
i

+
(Mℓν − MW )2

Γ2
W

+
(Mjj − MW )2

Γ2
W

+
(Mbℓν − Mtop)

2

Γ2
top

+
(Mbjj − Mtop)

2

Γ2
top

(6.6)

The quantity i runs over the physics objects in the events - the tight lepton, leading 4 jets, and

the unclustered energy, a quantity that is related to the missing transverse energy. Their momenta

are allowed to float within their measurement resolution. The invariant masses of the two W ’s are

constrained to the invariant mass of the leptonic and hadronic decay products. The z-component

of the neutrino momentum is a free parameter in the fit. The initial value of pν
z is set by solving

the quadratic equation M2
W = (pℓ + pν)2. A minimization is performed for each solution to the

equation. The invariant masses of the two top quarks are constrained to the invariant mass of the

Wb where the W decays either leptonically or hadronically. The χ2 is minimized for each possible

final state assignment of jets to quarks and each initial value of pν
z . In the analysis of Mtop, the top

mass is a free parameter in the fit. For the reconstruction of the invariant mass spectrum the top

quark mass is constrained to 175 GeV/c2. The invariant mass of the tt system is reconstructed from

the four-momenta of the jets, leptons, and neutrino returned by the fit.

Using the above procedure to reconstruct Mtt, templates are made for the Z ′ signal, and Standard

Model and background processes. The Mtt distribution in data is compared to these templates

in Figure 6.3. Again no significant discrepancy with the SM expectation is found, so limits are set

on the Z ′ production cross section. The limits are set in the same manner as the matrix element

analysis. The expected and observed limits are shown in Figure 6.4. A narrow leptophobic Z ′ is

excluded at 95% confidence level for masses up to 720 GeV/c2.

The DØ collaboration has also searched for narrow resonances in the tt lepton plus jets final

state. The result has been submitted for publication with 1 fb−1 of data [42] and updated with

2 fb−1 of data [43].

The invariant mass reconstruction technique is much simpler in this case. Events with at least

3 tight jets are selected, where at least one jet has been identified by a b-tagging algorithm. The
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Figure 6.4: The observed and expected limits for a narrow Z ′-like resonance obtained using the χ2

reconstruction technique [41].
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Figure 6.5: The distribution of Mtt obtained from reconstructed objects in events with 3 jets [43].

transverse momentum of the neutrino is given by the missing transverse energy in the event. The

z-component of the neutrino momentum is given by the solution to the quadratic equation M2
W =

(pℓ + pν)2 which gives the smallest absolute value of pν
z . The tt invariant mass is given by the

invariant mass of the lead jets (up to 4), the lepton and the neutrino. The Mtt distribution in data

is compared to templates for a 650 GeV/c2 narrow Z ′, tt and SM tt backgrounds for events with 3

jets and ≥ 4 jets in Figures 6.5 and 6.6, respectively.

No significant excess is observed in the 2.1 fb−1 of data analyzed so limits are set of Z ′ production.

The limit-setting procedure is identical to the CDF analyses. A narrow leptophobic Z ′ is excluded

at 95% confidence level for masses up to 760 GeV/c2.

In summary, the CDF and DØ collaborations have performed searches for a narrow Z ′-like

resonance in the tt final state with up to 2 fb−1 of data. No significant discrepancy with SM tt

production has been observed. A narrow Z ′-like state with masses up to 760 GeV/c2 is excluded at

the 95% confidence level.
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Figure 6.6: The distribution of Mtt obtained from reconstructed objects in events with 4 or more
jets [43].
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Figure 6.8: The distribution of Mtt obtained using a modified matrix element technique [44].

6.3 Search for Massive Gluons

For a signal which interferes with the Standard Model process, producing potentially broad reso-

nances and distortions, the limits described above for narrow width resonances do not apply because

the Poisson binned likelihood is not sensitive to excesses or deficits which are spread over a large

number of bins.

CDF has completed a search for a massive color octet resonance - for example, a coloron or

massive gluon as described in Section 1.4 - in 1.9 fb−1 of data [44]. The search included resonances

with masses from 400 to 800 GeV/c2 and widths of 0.05 · M to 0.50 · M . The invariant mass

reconstruction scheme is based on the matrix element technique used in [39] and [38]. However,

the constraint to the tt matrix element was released to maximize sensitivity to beyond the Standard

Model physics processes. In other words, the term π({−→p }) in Equation 6.2 is set equal to one.

The measured invariant using this reconstruction technique is compared to the SM expectation in

Figure 6.8.

An unbinned likelihood is used to compare the reconstructed Mtt distribution in data to the

templates for the SM tt and background processes and color octet resonances with various couplings

to quarks. The likelihood function is given by:

L = Lshape × LNevts × LBkg. (6.7)

Most of the information comes from the term Lshape:

Lshape =
N∏

n=1

nsigPsig(Mtt;λ) + nbkgPbkg(Mtt)

nsig + nbkg
(6.8)
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Figure 6.9: The 95% confidence level limits for narrow color octet resonances [44].

where λ is the color octet resonance coupling. This term gives the probability that an event comes

from either a resonance or SM background. The term LNevts is a Poisson term:

LNevts =
e−(nsig+nbkg)(nsig + nbkg)

N

N !
. (6.9)

The term LBkg constrains the background (including tt) to the SM expectation, nSM
bkg , with uncer-

tainty σSM :

LBkg = exp(−
(nbkg − nSM

bkg )2

2σ2
SM

). (6.10)

The fitted value of λ is consistent with the SM expectation of zero for the entire region of resonance

masses and widths explored. Limits are set by assuming a flat prior distribution for λ and integrating

the likelihood to 95% of the area. The resulting limits as a function of mass for a narrow resonance

are shown in Figure 6.9 and for a wide resonance in Figure 6.10.
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Chapter 7

Analysis Method

7.1 Introduction

In Chapter 6 I reviewed the various techniques that have been utilized to study the Mtt spectrum.

Most of these techniques were borrowed from analyses of the top quark mass. These methods achieve

high resolution by constraining the kinematics of the final state to the kinematics of the lepton+jets

decay of the tt pair. While a higher resolution on Mtt lends to stricter limits on physics beyond

the SM, it is important to not over-constrain the system with an algorithm that makes every input

look like the SM. Over-constraining also depends somewhat on the model of interest - a more subtle

distortion to the SM from a massive gluon, for instance, requires more consideration than a strong

peak from a Z ′. For example, the search for a massive color octet resonance described in Section 6.3

did not employ the constraint to the SM matrix element that the narrow resonance search based on

the same technique used.

At the same time that over-constraining the tt system is a concern, it is also important to consider

the interpretation of results. In general the raw Mtt distribution that is obtained from the four-

momenta of the physics objects of the event is detector-dependent in the sense that the resolution

of objects is detector-specific. Especially if a significant distortion to the expected Mtt spectrum

is found, a detector-dependent Mtt spectrum will be very difficult to interpret theoretically [45].

For example, Figure 7.1 shows a 2-dimensional histogram of M true
tt

versus the reconstructed Mtt

as defined in Section 4.4. Generally values of Mtt correspond to values near M true
tt

, but there is

also significant spread. If a resonance is found in the region of Mtt = 600 GeV/c2, it could be

coming from values of M true
tt

from 400 to 950 GeV/c2. The quality of jet reconstruction and missing

energy reconstruction in particular determine the degree of migration from M true
tt

to Mtt, and those

quantities are detector-dependent.

The challenge of Mtt reconstruction is to balance the need for a meaningful partonic-level mea-

surement with the desire to maintain sensitivity to physics beyond the SM. I use an unfolding

technique which constrains the tt system to the extent that the bin migration from M true
tt

true bin

j to Mtt bin i in the Monte Carlo simulation is assumed to be accurate and the true underlying

distribution does not differ wildly from the SM distribution. This technique is complementary to

those described in Chapter 6. The Mtt distribution is corrected to M true
tt

, so the results can be

easily compared to theoretical predictions for various beyond the SM physics processes.
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Figure 7.1: True Mtt versus reconstructed Mtt in tt Monte Carlo simulation.

7.2 Unfolding

The reconstructed Mtt distribution, g(Mtt), can be expressed as the convolution of M true
tt

with a

detector response function, A(Mtt,M
true
tt

):

g(Mtt) =

∫
dM true

tt
A(Mtt,M

true
tt

)f(M true
tt

). (7.1)

The goal of unfolding is to invert the function A(Mtt,M
true
tt

) in order to obtain f(M true
tt

) from

g(Mtt). Because I observe discrete events in various bins of Mtt, the problem is better formulated

in terms of these discrete values. This formulation is taken from Reference [48]. Let x represent a

vector of M true
tt

values in nx bins with bin boundaries M true,j

tt
, j = 1, ..., nx − 1. The components xj

are given by:

xj =

∫ Mtrue,j

tt

Mtrue,j−1

tt

dM true
tt

f(M true
tt

). (7.2)

Similarly, let b represent a vector of Mtt values in nb bins with boundaries M j

tt
, j = 1, ..., nb −1. The

components of bj are given by:

bj =

∫ Mj

tt

Mj−1

tt

dMtt g(Mtt). (7.3)
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The detector response function A(Mtt,M
true
tt

) relates the true and measured distributions:

g(Mtt) =

∫ Mtrue,nx

tt

Mtrue,0

tt

dM true
tt

A(Mtt,M
true
tt

)f(M true
tt

). (7.4)

From Equation 7.4 it follows that a response matrix A with entries Aij may be written as:

Aij =

∫ Mi

tt

Mi−1

tt

dMtt

∫ Mtrue,j

tt

Mtrue,j−1

tt

dM true
tt

A(Mtt,M
true
tt

)f(M true
tt

)

∫ Mtrue,j

tt

Mtrue,j−1

tt

dM true
tt

f(M true
tt

)

. (7.5)

Now the problem I wish to solve is the matrix equation:

Ax = b. (7.6)

Equation 7.6 is easily solved if the matrix A may be inverted. However, there is no guarantee

that A can be inverted, and, furthermore, that the inversion will make sense - i.e. lead to a sensible

vector x with non-negative values. The problems of the inversion can be traced to the inevitable

statistical fluctuations present in both the measured vector b and the Monte Carlo model used to

produce A. There are many techniques available to suppress these fluctuations [48, 49, 50]. I choose

the Singular Value Decomposition (SVD) method [48] of data unfolding because the algorithm is

linear and easy to implement. The example in Section 7.2.1 and the algorithm description follow

Reference [48].

7.2.1 A Simple Example

The SVD of a real m × n matrix A is a factorization of the form:

A = USV T (7.7)

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix, and S is an m×n diagonal

matrix with non-negative entries. The diagonal entries of S, si, are the “singular values” of S. For

a degenerate matrix, at least one singular value will be zero and the number of non-zero singular

values is equal to the rank of the system. When some singular values of A are small in comparison

with others, the system becomes ill-behaved and must be “regularized” in order to obtain a sensible

solution.

The following simple example with a 2× 2 detector response matrix illustrates both how SVD is

used for unfolding and the need for regularization.

The response matrix A has the form:

A =
1

2

(
1 + ǫ 1 − ǫ

1 − ǫ 1 + ǫ

)
(7.8)
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where 0 ≤ ǫ ≤ 1. A perfect detector would have ǫ = 1 while a very poor detector would have ǫ ≪ 1

- the extreme case of ǫ = 0 would indicate a detector which cannot distinguish between events in

the two bins. The vector of measured events, b, is given by:

b =

(
b1

b2

)
. (7.9)

The vector b has only statistical uncertainties so its covariance matrix, B, is given by:

B =

(
b1 0

0 b2

)
. (7.10)

The vector of true events, x, is given by:

x =

(
x1

x2

)
. (7.11)

Performing an SVD decomposition, Equation 7.7, on A leads to the following U and V matrices:

U = V =
1√
2

(
1 1

1 −1

)
(7.12)

and matrix S, with singular values 1 and ǫ:

S =

(
1 0

0 ǫ

)
. (7.13)

Now Equation 7.4 can be rewritten in terms of the U ,V , and S matrices as:

USV T x = b. (7.14)

Equation 7.14 may be diagonalized by multiplying on the left by UT to give:

Sz = d (7.15)

where

z ≡ V T x =
1√
2

(
x1 + x2

x1 − x2

)
, d ≡ UT b =

1√
2

(
b1 + b2

b1 − b2

)
. (7.16)

Note that the matrix S is trivially inverted by replacing the diagonal entries si with 1/si. Now we

have:

z = V T x = S−1d. (7.17)
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Multiplying on the left by V leads to the solution:

x = V z = V S−1d = V S−1UT b = A−1b =
b1 − b2

2ǫ

(
1

−1

)
+

b1 + b2

2

(
1

1

)
. (7.18)

The original matrix equation Ax = b has been solved by rotating both the left and right side to

form a diagonal system, Equation 7.15, with a matrix S that can be easily inverted.

7.2.2 The Need for Regularization

The solution given in Equation 7.18 is reasonable if ǫ is not too small and all elements of d, given

by Equation 7.16 are statistically significant. The covariance matrix for d is given by:

D = UT BU =
1

2

(
b1 + b2 b1 − b2

b1 − b2 b1 + b2

)
. (7.19)

Now if b1 − b2 is not statistically significant - (b1 − b2)
2 ≤ b1 + b2 - the covariance matrix D is

approximately diagonal. Equation 7.15 gives:

1 · z1 =
b1 + b2

2
±

√
b1 + b2

2
(7.20)

and

ǫ · z2 =
b1 − b2

2
±

√
b1 + b2

2
(7.21)

where the uncertainty on the right hand side is from the covariance matrix D. Equation 7.21

simply does not make sense when ǫ is small and the difference b1 − b2 is statistically insignificant.

Furthermore, the rotation of z back to the desired vector x according to Equation 7.18 causes the

problematic z2 term to contribute large spurious terms to both components of x. Again, this has

occurred because ǫ is small and the vector b is subject to large uncertainties. In this case the matrix

A has insufficient rank and the system of equations is over-determined.

Suppressing the fluctuation caused by z2 is called “regularization” of the solution. In order to

do this, z2 must be determined from some a priori condition. A reasonable a priori condition here

is that ‖x‖2 - the Euclidean norm of the vector x - is minimized. This is achieved by setting z2=0,

leading to the following regularized solution for x:

xreg =
b1 + b2

2

(
1

1

)
(7.22)

7.2.3 Regularized Unfolding

The solution or the matrix equation Ax = b is also the solution to the following least squares

problem:

(b − Ax)T (b − Ax) ≡ ‖r‖2 = min. (7.23)
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In regularizing the solution I seek to reduce the number of vectors x which minimize the norm

of the residual vector r to eliminate unphysical or unreasonable solutions to the problem. There

are many techniques utilized to address this problem [51]. Regardless of the approach taken, it

is necessary to have in hand some a priori condition which defines what constitutes a reasonable

solution. My a priori condition will be that the the M true
tt

spectrum is well-described by the Monte

Carlo simulation.

In order to impose this condition Equation 7.6 is recast in the following form:

A′w = b. (7.24)

The elements of the new detector response matrix A′ are given by:

A′
ij = N ij

events (7.25)

where N ij
events represents the number of events generated in bin j that are measured in bin i. The

elements of this matrix are easily generated from Monte Carlo events by forming the 2-dimensional

distribution of true versus measured quantities, in this analysis Mtt. The new unknown vector w is

given by:

wj =
xj

xini
j

. (7.26)

This vector measures the deviation from the input true distribution, generated from Monte Carlo

events. The unfolding procedure will solve for the vector w, from which the desired vector x can be

found simply according to:

xj = wjx
ini
j . (7.27)

The a priori condition is that the vector w is reasonably smooth.

Recasting A in the form of A′ is also beneficial for determining the effective rank of the system.

Again, the elements A′
ij are determined by producing a 2-D distribution of M true

tt
versus Mtt. Bins

in the tails of this distribution are poorly populated and subject to large statistical fluctuations.

For the probability detector response matrix A, that could lead to an entry Aij = 1 with a very

large statistical uncertainty - 100% if the bin contained only one entry. Conversely, well-populated

bins would have entries Aij < 1 with small uncertainties. The equations with the largest statistical

uncertainty would be given the largest weight, which leads to the same problems as the small ǫ

discussed above - over-determined equations from a matrix with insufficient rank.

It is also useful to transform the least squares problem of Equation 7.23 to the weighted least

squares problem:

(b − A′w)B−1(b − A′w) ≡ ‖r̃‖2 = min. (7.28)

By rescaling each equation in the system by the uncertainty on the vector b, each equation will have

equal importance. If the covariance matrix B is not diagonal a rotation is first performed on the

left and right hand sides of Equation 7.24. The procedure is as follows:
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• Perform an SVD on the covariance matrix B. The SVD on the covariance matrix B yields1:

B = QRQT , Rii ≡ r2
i 6= 0, Rij = 0, i 6= j. (7.29)

• Rotate and rescale the matrix A′ and vector b of Equation 7.24 to the new matrix Ã and b̃

defined by:

Ãij =
1

ri

∑

m

QimAmj , b̃i =
1

ri

∑

m

Qimbm. (7.30)

Now the equation to be solved is:

Ãw = b̃, (7.31)

or equivalently:

(b − Ãw)T (b − Ãw) = min. (7.32)

Regularization is achieved by adding a regularization term, τ , to the weighted least squares

Equation 7.32:

(b − Ãw)(b − Ãw) + τ(Cw)T Cw = min. (7.33)

The matrix C enforces the a priori condition on w, with an adjustable strength given by the value of

τ . To enforce the smoothness of w the matrix C is a minimum curvature matrix, with the curvature

of w given by the sum of squares of its the second derivatives:

∑

i

[(wi+1 − wi) − (wi − wi−1)]
2 (7.34)

with the form:

C =




−1 + ξ 1 0 0 ...

1 −2 + ξ 1 0 ...

0 1 −2 + ξ 1 ...

... 0 1 −2 + ξ 1

... ... 0 1 −1 + ξ




(7.35)

where ξ is a small - ∼ 10−3 - term which insures that C may be inverted. Now the problem may be

formulated in terms of a damped least squares problem:

(
ÃC−1

√
τI

)
Cw =

(
b̃

0

)
. (7.36)

For the case τ = 0, or no regularization, the problem is solved as in Section 7.2.1 with the

substitutions A → ÃC−1 and x → Cw in Equation 7.6. An SVD is performed on the product ÃC−1

to give:

ÃC−1 = USV T , Sii = si, Sij = 0, i 6= j. (7.37)

1The SVD of B has this form because it is a positive definite, symmetric matrix
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Now the diagonal system, Equation 7.15, is solved with:

d ≡ UT b̃, z ≡ V T Cw (7.38)

to give:

zi = di/si. (7.39)

Finally, the vector w is found by multiplying Equation 7.38 on the left by the product C−1V :

w = C−1V z (7.40)

and w and the underlying distribution vector x are related according to Equation 7.27.

For τ > 0 the solution is found by multiplying Equation 7.36 by Givens rotation matrices [51].

The vectors d and z of Equation 7.38 are replaced by regularized vectors dτ and zτ , defined by:

dτ
i ≡ di

s2
i

s2
i + τ

, zτ
i ≡ disi

s2
i + τ

. (7.41)

Equation 7.40 becomes:

wτ = C−1V zτ . (7.42)

The regularized x vector is given by:

xτ = xini
i wτ

i . (7.43)

The covariance matrices for wτ , zτ and xτ - W τ , Zτ and Xτ , respectively - are given by:

W τ = C−1V ZτV T CT−1, (7.44)

Zτ
ik =

s2
i

(s2
i + τ)2

δik, (7.45)

and

Xτ
ik = xini

i W τ
ikxini

k . (7.46)

7.2.4 Choosing the Regularization Parameter

In Section 7.2.2 I showed how regularization is needed if not all elements of d are statistically

significant. It follows then that the regularization parameter can be determined by examining the

values of di as given by Equation 7.38. In particular, plotting di, or log(di) versus i will show some

values of di for i < k are large and statistically significant, while for i > k the values are small and

randomly distributed. This indicates that the system has only k statistically significant equations,

or in other words, that the effective rank of the detector response matrix, A, is k. The regularization

parameter τ is set to the square of the kth singular value of the matrix ÃC−1 (see Equation 7.37):

τ = s2
k. (7.47)
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7.2.5 Algorithm Summary

In summary, the algorithm for SVD unfolding proceeds in a series of steps with no loop:

1. Define the number of bins and bin boundaries for the distribution. I set the number of bins in

the true and reconstructed distributions to be equal, nb = nx = n.

2. Build the second derivative matrix C, according to Equation 7.35 and calculate its inverse.

3. Build the detector response matrix A′ according to Equation 7.25 and the vector xini, the

input true distribution, from a Monte Carlo simulation.

4. Determine the vector b and its associated covariance matrix B from the data.

5. Rotate and rescale the matrix A′ and the vector b according to Equations 7.29 and 7.30.

6. Perform an SVD on the product ÃC−1 according to Equation 7.37.

7. Rotate the vector b̃ to the vector d according to Equation 7.38.

8. Determine the effective rank of the system from a plot of log|di| versus i.

9. Set the regularization parameter τ according to Equation 7.47.

10. Calculate the vectors zτ , wτ and their covariances matrices according to Equations 7.41, 7.44

and 7.45.

11. Finally calculate the unfolded xτ vector according to Equation 7.43 and its covariance matrix

according to Equation 7.46.

7.2.6 Implementing the Algorithm

I follow the algorithm as outlined in Section 7.2.5 to write a C++ implementation of the SVD unfolding

algorithm. The algorithm is meant to function inside of ROOT and uses the ROOT library TDecompSVD

in order to perform the singular value decomposition of the relevant matrices. The code is publicly

available [52].

7.2.7 Unfolding the Mtt Distribution

I first test the unfolding of the Mtt distribution in the absence of background. I create a pseudo-data

distribution of reconstructed tt invariant masses by fluctuating the reconstructed distribution in the

Monte Carlo simulation. The tt content is normalized to that observed in the data. I then proceed

with the steps outlined in Section 7.2.5.

The effective rank of the system is set by examining the logarithm of elements of the vector d

versus i as shown in Figure 7.2. Based on Figure 7.2 the effective rank of the system, k, is set to

4. The choice of 4 is somewhat arbitrary - choosing k = 3 or k = 5 will produce similar results.

However, choosing k much too small or much too large will cause over- or under-regularization. The

unfolded distribution with k = 4 compared to the truth information, is shown in Figure 7.3. If I set
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Figure 7.2: The logarithm of the elements of d, as defined in Equation 7.38 versus i.
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Figure 7.3: The unfolded distribution, with k = 4, as compared to the true distribution.
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Figure 7.4: The unfolded distribution, with k = 1, as compared to the true distribution. The
solution is over-regulated.

k = 1 the system is over-regularized. This distribution is shown in Figure 7.4. Over-regularization

forces the solution to be the input Monte Carlo truth distribution times an overall constant regardless

of the shape of the data. If I set the effective rank of the system too high the system will be under-

regulated. The resulting unfolded distribution is compared to the true distribution in Figure 7.5. If

this case the elements of the vector w vary wildly, where some elements are negative. This is the

type of solution that would result from using no regularization.

In order to further test the procedure, I perform several thousand pseudo-experiments, fluctuating

to a new pseudo-data set each time and checking the accuracy of the unfolded distributions. For

each pseudo-experiment, the regularization is set by k = 4. I form the pull distribution in each of

the 9 bins of Mtt:

pull = (N i
unfold − N i

true)/σNi
unfold

(7.48)

where N i
unfold is the number of events in each bin i after unfolding, N i

true is the number of events

in the true Monte Carlo distribution and σNi
unfold

is the uncertainty on N i
unfold from the covariance

matrix of the unfolded vector of events.2 If the procedure is unbiased and the uncertainties are

accurate the pull should be a unit Gaussian with mean 0 and width 1. The mean and width of the

pulls in each bin are given in Table 7.1. The means and widths are consistent with 0 and 1, within

2 · σ of the their respective uncertainties, in each bin of Mtt. So the unfolding procedure, at least

with signal-only, is unbiased and returns accurate uncertainties.

7.3 Calculating dσ/dMtt

The differential cross section, as given in Equation 5.6, is calculated as follows:

1. Subtract from the data in each bin of the measured Mtt distribution the expected number of

2The uncertainty for bin i is given by the square root of the ii element (diagonal element of row i) of the matrix.
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Figure 7.5: The unfolded distribution, with k = 8, as compared to the true distribution. The
solution is under-regulated.

Mtt [GeV/c2] Pull Mean Pull Width
0-350 0.02 ± 0.02 0.98 ± 0.01

350-400 0.02 ± 0.02 0.99 ± 0.01
400-450 0.02 ± 0.02 0.99 ± 0.01
450-500 −0.02 ± 0.02 0.99 ± 0.01
500-500 −0.03 ± 0.02 1.00 ± 0.01
550-600 −0.02 ± 0.02 1.02 ± 0.01
600-700 0.00 ± 0.02 1.01 ± 0.01
700-800 0.01 ± 0.02 0.99 ± 0.01
800-1400 0.01 ± 0.02 0.99 ± 0.01

Table 7.1: The mean and widths of the pull for the number of unfolded events in each bin, as defined
in Equation 7.48, for pseudo-experiments constructed with tt signal only.
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background events, N i
bkg according to the Mtt distribution of the SM background processes,

as in Table 5.3 and Figure 5.3.

2. Feed the vector of tt events reconstructed in each bin to the unfolding algorithm.

3. Divide the number of events in each bin after unfolding, N i
unfold, by the appropriate denomina-

tor to obtain dσ/dMtt. The denominator in each bin is the product of the selection efficiencies

in Table 4.8 with the integrated luminosity and the bin width. The complete denominators

are given in Table 7.2.

Mtt [GeV/c2] CEM CMUP CMX ALL

Denominator without bin width [pb−1]

≤ 350 23.55 ± 1.49 13.64 ± 1.00 6.10 ± 0.42 43.30 ± 1.84
350-400 35.06 ± 2.22 18.74 ± 1.37 9.03 ± 0.62 62.83 ± 2.69
400-450 39.23 ± 2.49 20.99 ± 1.54 9.87 ± 0.68 70.10 ± 3.00
450-500 41.11 ± 2.61 22.41 ± 1.64 10.15 ± 0.70 73.66 ± 3.16
500-550 43.41 ± 2.75 23.51 ± 1.72 11.03 ± 0.76 77.95 ± 3.33
550-600 44.30 ± 2.81 24.13 ± 1.77 10.95 ± 0.76 79.37 ± 3.40
600-700 44.64 ± 2.83 23.94 ± 1.75 11.52 ± 0.79 80.10 ± 3.42
700-800 45.35 ± 2.87 22.83 ± 1.67 10.83 ± 0.75 79.02 ± 3.41
800-1400 35.91 ± 2.28 18.27 ± 1.34 8.46 ± 0.58 62.64 ± 2.70
All bins 38.88 ± 2.46 20.91 ± 1.53 9.83 ± 0.68 69.61 ± 2.98

Final Denominator with bin width[GeV/c2pb−1]

≤ 350 8243.09 ± 522.54 4773.64 ± 349.50 2136.74 ± 147.46 15153.47 ± 645.71
350-400 1752.87 ± 111.12 937.03 ± 68.60 451.74 ± 31.17 3141.64 ± 134.26
400-450 1961.66 ± 124.35 1049.43 ± 76.83 493.72 ± 34.07 3504.81 ± 150.09
450-500 2055.31 ± 130.29 1120.29 ± 82.02 507.39 ± 35.01 3682.99 ± 157.89
500-550 2170.41 ± 137.58 1175.41 ± 86.06 551.59 ± 38.06 3897.41 ± 166.69
550-600 2215.06 ± 140.41 1206.40 ± 88.33 547.28 ± 37.77 3968.73 ± 170.13
600-700 4463.80 ± 282.96 2393.89 ± 175.27 1151.88 ± 79.49 8009.58 ± 342.21
700-800 4535.28 ± 287.50 2283.35 ± 167.17 1083.06 ± 74.74 7901.69 ± 340.86
800-1400 21545.67 ± 1365.82 10959.70 ± 802.42 5077.75 ± 350.43 37583.12 ± 1622.38

Table 7.2: Denominator in bins of Mtt, assuming 2.7 fb−1 of data.

I check this full procedure by again performing pseudo-experiments, where the pseudo-data

distribution is formed for each experiment by fluctuating both the expected signal and background

distributions from Monte Carlo simulation. In each experiment, I perform the steps outlined above.

First, the expected background in each bin is subtracted from the pseudo-data Mtt distribution.

Next, I unfold with regularization set by k = 4. Now the input covariance matrix for the unfolding

procedure includes both the uncertainty on the background content in each bin in addition to the

Poisson uncertainty on the number of events reconstructed in each bin.3 I again check the pull

distribution in each bin - the results are given in Table 7.3. The pull widths that are less than 1 in

several bin indicate that there is a slight over-estimation of the uncertainty in those bins. However,

this is about a 5% effect and I do not correct for it. The pull means are shifted from zero by greater

than 2 · σ in several bins. This would be a cause for concern if the shift would cause a significant

3The input covariance matrix is diagonal. The ii element is given by the quadrature sum of uncertainty on the
number of background events in bin i and the Poisson uncertainty on the reconstructed events in each bin.
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difference in the value of dσ/dMtt in that bin. However, this is not case - with a large number of

events expected in most bins the effect on the final cross section is negligible with respect to the

statistical uncertainty. The exception is in the last two bins, where less than 10 events are expected

in each bin. However this shift is explained by the positive tail on the Poisson distribution for a

number of events with a small mean.

Mtt [GeV/c2] Pull Mean Pull Width
0-350 −0.01 ± 0.02 0.93 ± 0.01

350-400 0.03 ± 0.02 0.96 ± 0.01
400-450 0.04 ± 0.02 1.01 ± 0.01
450-500 0.05 ± 0.02 0.95 ± 0.01
500-550 −0.02 ± 0.02 0.98 ± 0.01
550-600 −0.06 ± 0.02 1.02 ± 0.01
600-700 −0.03 ± 0.02 1.03 ± 0.01
700-800 0.05 ± 0.02 0.99 ± 0.01
800-1400 0.09 ± 0.02 0.97 ± 0.01

Table 7.3: The mean and widths of the pull for the number of unfolded events in each bin, as defined
in Equation 7.48, for pseudo-experiments constructed with both signal and background events.

The results from data will be given in Chapter 10. First, I will discuss the various systematic

uncertainties which affect the result and how these are evaluated in the next chapter.
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Chapter 8

Systematic Uncertainties

8.1 Introduction

Systematic uncertainties arise from uncertainties in the Monte Carlo modeling of the Mtt shape

in signal and background, modeling of the acceptance, the estimation of the data sample compo-

sition and the uncertainty on the integrated luminosity of the data sample. The effect of these

uncertainties on the cross section measurement is assessed by varying the Monte Carlo model in

pseudo-experiments.

8.2 Sources of Uncertainty

Most uncertainties affect both the shape of the reconstructed Mtt distribution and the 2-dimensional

distribution of M true
tt

versus Mtt used to derive the detector response matrix (see Figure 7.1) as well

as the acceptance in each bin (see Section 4.4.1). I will point out the exceptions as I describe them

below. Roughly in order of largest to smallest effects, the systematic effects I consider include:

1. The uncertainties on the jet energy scale described in Section 4.2.4 primarily effect the shape of

the reconstructed Mtt distribution, especially the leading edge of the distribution. In general

a ±1 ·σ shift in the jet energy scale causes a ±5 GeV/c2 shift in the mean of the reconstructed

Mtt distribution. The jet energy scale does not affect the truth level quantities (the top

and anti-top 4-momenta) but it does cause migrations in the jets passing the ET > 20 GeV

requirement in the event selection. This migration of jets above and below threshold causes

shifts in the acceptance on the order of a few percent.

2. The PDF’s which describe the distribution of the proton and anti-proton momenta among the

constituent quarks and gluons carry uncertainties due to the uncertainties associated with the

underlying experimental measurements used to calculate the PDF’s. An additional source of

uncertainty is the set of assumptions and methods used to calculate the PDF’s, which vary by

calculation. The tail of the Mtt distribution is highly sensitive to the choice of PDF at both

the truth and reconstruction levels, so all aspects of the differential cross section are effected.

I consider three different variations to the PDF set used for the signal Monte Carlo simulation.

The first variation is to compare the measured dσ/dMtt using the default CTEQ5L PDF to the

MRST72 PDF [54]. The second change uses variations in the next to leading order CTEQ PDF
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CTEQ6L. The CTEQ6L PDF set is described by 20 independent eigenvectors. A 90% confidence

interval for each eigenvector is provided. The difference in the measured dσ/dMtt between

the maximum and minimum value and the central value is computed.1 Finally the difference

between the MRST72 and MRST75 PDF’s is considered. These two MRST PDF’s [54] use different

values of αs. The final PDF uncertainty is the quadrature sum of the largest of the first two

effects with the comparison of different αs values.

3. The uncertainty on the normalization of the tt backgrounds propagates to dσ/dMtt as an

uncertainty on the tt content in each bin.

4. As I discussed in Section 3.2 the exact details of the model used for quark hadronization to

jets varies among Monte Carlo event generators. I assess an uncertainty on the Monte Carlo

event generator by comparing the measured dσ/dMtt with the default generator (PYTHIA) to

an alternate generator, HERWIG.

5. The uncertainty on the acceptance includes a small statistical uncertainty due to the size of

the sample used to calculate the acceptance and the uncertainties on the various corrections

factors that are applied to the raw acceptance (see Section 4.4.1).

6. Gluons radiated by the initial quarks or gluons and/or the final state tt pair cause extra jets in

the event not from top. Because I allow greater than 4 jets in my event selection, I am largely

insensitive to the effects of final state radiation (FSR), but jets due to initial state radiation

(ISR) that are incorrectly attributed to the tt pair alter the shape of the Mtt distribution and

the acceptance in each bin. The amount of ISR and FSR are tunable parameters in the Monte

Carlo simulation. A systematic uncertainty is assessed by putting more or less ISR and FSR

in the simulation and comparing the measured dσ/dMtt to the default. The allowed variation

is based on a study of ISR in Drell-Yan events in data and Monte Carlo simulations. The same

variation is applied to the ISR and FSR simultaneously.

7. The Mtt distribution of the SM tt backgrounds is taken from Monte Carlo simulations of the

various background processes, as described in Section 5.4. A systematic uncertainty on the

largest background shape, that from W+jets events, is assessed by varying the Q2 scale of

the hard scatter process in the ALPGEN Monte Carlo simulation and comparing the measured

dσ/dMtt. The default is compared to Monte Carlo events generated with one half and twice

the Q2 scale. I also assess a systematic on the shape of the non-W background by using an

alternate data model for the non-W events.

8. The measurement of the luminosity carries an irreducible 6% uncertainty due to the uncertainty

of the acceptance of the CLC detectors and the calculation of the total inelastic pp cross section.

1I do not use 40 different signal Monte Carlo simulations to evaluate the uncertainty. The default signal Monte
Carlo sample is re-weighted to account for differences between CTEQ5L and the CTEQ6 eigenvectors.
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8.3 Evaluating Systematic Uncertainties

I evaluate the effect on the measured dσ/dMtt of the systematic uncertainties listed in the previous

section by using a pseudo-experiment approach. In each pseudo-experiment I vary the pseudo-

data by using the various samples I describe above instead of the default models. For example, to

evaluate the jet energy scale uncertainty, the pseudo-data is drawn from Mtt distributions of signal

and background with the jet energy scale shifted by ±1 · σJES . I perform the analysis as I would

in data with the default unfolding procedure and acceptances in each bin and calculate dσ/dMtt.

In this way I model the effect of using the wrong unfolding model and acceptance in the data.

For the uncertainties related to the background normalization and the acceptance, the pseudo-data

does not change. To evaluate the background normalization systematic uncertainty I subtract the

background distribution normalized to the central value of the prediction plus or minus 1 · σBkg,

as given in Table 5.3. To evaluate the uncertainty on the acceptance I divide by the denominator

shifted by plus or minus 1 · σAi
uncertainty, as given in Table 7.2.

The final systematic uncertainty on dσ/dMtt is assessed per-bin by comparing the mean mea-

sured differential cross section in each bin from pseudo-experiments with the variations to pseudo-

experiments using the default models. For those variations with a well-defined ±1 · σ variation -

for example, the jet energy scale - the systematic uncertainty in each bin is one half the difference

between the +1 ·σ variation and −1 ·σ variation. For those systematic uncertainties which are eval-

uated via a comparison of two models - for example, the Monte Carlo event generator systematic -

the systematic uncertainty in each bin is the absolute value of the difference between the variation

and the default.

8.4 Expected Sensitivity of the Analysis

The final systematic uncertainties for each bin are given in Table 8.4. The total systematic uncer-

tainty in each bin is the quadrature sum of all of the individual uncertainties in each bin. The total

does not include the 6% uncertainty due to luminosity in each bin.

Bin Number 1 2 3 4 5 6 7 8 9
MC Gen. 11.7 7.6 0.2 4.6 5.5 6.6 10.8 15.5 18.1
ISR/FSR 4.2 2.5 0.8 2.4 1.7 1.1 0.9 1.1 1.9
JES 22.3 10.6 11.1 21.1 21.3 20.8 22.8 25.3 26.3
Back. Shape 0.4 0.1 0.3 0.4 0.9 1.4 1.4 0.8 0.6
Back. Norm. 11.1 7.8 2.1 1.1 2.6 3.8 4.3 4.7 4.7
Acceptance 4.5 4.4 4.3 4.4 4.7 5.1 5.2 4.8 4.5
PDF Set 7.4 5.6 2.2 1.2 5.2 10.1 14.8 18.0 18.7
Total 29.1 17.0 12.3 22.2 23.3 24.9 30.1 35.3 37.6

Table 8.1: Summary of systematic uncertainties on dσ/dMtt in each bin. All uncertainties are given
as percentages. The bins are defined in Table 4.3.

The total sensitivity of the analysis is determined by the sum of the statistical and systematic

uncertainties. The breakdown of the total uncertainties in each bin is given in Table 8.2.
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Mtt [GeV/c2] Stat. Sum Syst. Total
0-350 22.4 29.1 36.8
350-400 14.2 17.0 22.2
400-450 9.5 12.3 15.5
450-500 12.5 22.2 25.5
500-550 14.4 23.3 27.4
550-600 16.2 24.9 29.7
600-700 19.7 30.1 35.9
700-800 31.1 35.3 47.0
800-1400 42.1 37.6 56.5

Table 8.2: Summary of total expected uncertainties. All uncertainties are given as percentages.

The systematic uncertainties in each bin are of the same order of magnitude as the statistical

uncertainties and are dominated by the uncertainty on the jet energy scale and the uncertainty due

to the choice of PDF. The uncertainty due to the PDF reflects the real sensitivity of the Mtt tail to

the momentum of the tt system. A significant reduction in the PDF uncertainty would require the

use of NLO PDF’s with NLO Monte Carlo simulation. Unfortunately, NLO Monte Carlo simulations

are not widely used due to technical problems with their implementation. However, a reduction in

the jet energy scale uncertainty is possible by constraining the jet energy scale by using the event

kinematics. The well-known W mass is used to constrain the jet energy scale of the jets from the

hadronically decaying W . This technique was originally used and developed to reduce the jet energy

scale uncertainty in a measurement of the top quark mass [55]. I will discuss how I apply this

technique for this analysis in the next chapter.
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Chapter 9

Reducing the Systematic

Uncertainties

9.1 Introduction

I completed a version of this analysis using the method described in Chapter 7 using 1.9 fb−1 of

data [56]. For the analysis with 2.7 fb−1 of data described here the jet energy scale uncertainty is

reduced using an in-situ calibration of the jet energy scale using the kinematics of the hadronically

decaying W in lepton+jets events. In this chapter I will describe how the in-situ calibration is used

along with the unfolding technique to measure dσ/dMtt. This technique reduces the systematic

uncertainties, presented in Table 8.4, by approximately 50% and the total statistical plus systematic

uncertainty by about 20% with respect to the analysis with no in-situ jet energy scale calibration.

I refer to the analysis without the in-situ jet energy scale calibration as the “baseline” analysis and

the analysis with the calibration as the “improved” analysis.

The nominal jet energy scale is defined by the jet corrections described in Section 4.2.4. I will

measure the quantity ∆JES , which is the deviation from the nominal jet energy scale, defined by

∆JES = 0, in units of the total systematic uncertainty on the jet energy scale, σJES , as shown in

Figure 4.8. The procedure is as follows: I reconstruct the invariant mass of the hadronic W daughters

- the “dijet” invariant mass, Mjj . Then I use an unbinned maximum likelihood fit to compare the

dijet invariant mass distribution in data to templates derived from Monte Carlo simulation with

known values of ∆JES . I then use the detector response matrix at ∆data
JES , the value of ∆JES that

I fit in the data, to unfold the distribution and divide by the acceptance measured using ∆data
JES to

obtain dσ/dMtt. The next three sections are devoted to each of these steps:

1. Fit the dijet distribution in data to obtain ∆data
JES .

2. Parameterize the detector response matrix and obtain the matrix at ∆data
JES .

3. Parameterize the acceptance and obtain the denominator in each bin at ∆data
JES .

9.2 Measurement of ∆JES from the Dijet Invariant Mass

Distribution

In order to reconstruct the dijet mass distribution the jets from the decay of the W must be dis-

tinguished from the other jets in the event. Because I assume that the 4 most energetic jets in the
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Figure 9.1: The reconstructed Mjj signal distribution in Monte Carlo events at various values of
∆JES .

event are from the decay of the tt pair the problem is to identify which 2 of these 4 jets are W

daughters and which 2 are b-jets. For events with 2 SecVtx b-tags in the leading 4 jets I identify the

2 untagged jets with the W daughters. For events with only 1 b-tag in the leading 4 jets I identify

the W daughters by looking for the combination of untagged jets that have an invariant mass closest

to the W mass. Because I do not apply the full set of jet corrections described in Section 4.2.4 the

distribution of Mjj peaks somewhat lower than 80.4 GeV/c2 due to the loss of energy outside the

jet cone, for which I do not correct. For events in the signal Monte Carlo simulation passing my

event selection where the jets have been matched to light quarks from the W in a cone of R < 0.4

the distribution peaks at 76.5 GeV/c2. So for events with only 1 b-tag I find the combination of

untagged jets with an invariant mass closest to 76.5 GeV/c2.

I reconstruct the Mjj distribution, as described above, for the signal and background models

for ∆JES = {−2,−1, 0, 1, 2} · σJES . The Mjj signal distribution at three different ∆JES points is

shown in Figure 9.1. The distribution is harder for larger values of ∆JES , as expected. The mean

of the distributions increases by approximately 1.5 GeV/c2 with each unit of ∆JES . The width also

changes slightly, getting wider at higher values of σJES . The Mjj distribution of the tt backgrounds

at the same ∆JES points in shown in Figure 9.2. The shapes do not vary appreciably with ∆JES .

Because the jet spectrum of the background processes is relatively soft there is significant migration

of jets above and below the jet ET threshold when the jet energy scale changes. The primary effect

of changing the jet energy scale is to change the number of events in the template. This effect is

constrained by the uncertainty on the normalization of the background events. Therefore, I assume

a background shape that is constant with respect to variation in ∆JES .

I fit these templates at various ∆JES points to obtain probability density functions for the signal

and background. The probability density function for the signal depends both on Mjj and ∆JES

but the background probability density function depends only on Mjj because the Mjj shape is

constant with respect to variations in ∆JES . The bulk of the Mjj probability distribution function

is modeled by a Landau function which is convoluted with a Gaussian. An extra Gaussian term is
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Figure 9.2: The reconstructed Mjj background distribution at various values of ∆JES .

added to account for the shoulder in the low mass region. The Landau and Gaussian convolution

has 4 parameters:

α0 Width of Landau density

α1 Most probable parameter of Landau density

α2 Normalization

α3 Width of convoluted Gaussian

The second Gaussian has 3 parameters:

α4 Normalization

α5 Mean

α6 Width

The probability density function for the signal is given by:

Psig(Mjj ;∆JES) = LandauGaussian(Mjj ;∆JES) + Gaussian(Mjj ;∆JES) (9.1)

where each parameter αi depends quadratically on ∆JES :

αi(∆JES) = pi + ∆JES · pi+7 + ∆2
JES · pi+14. (9.2)

A total of 21 parameters then define the signal probability distribution function. I use Minuit [57] to

perform a binned maximum likelihood fit for the 21 parameters. Figure 9.3 shows the fit overlayed

with the histograms of Figure 9.1. The probability distribution function for the background is given

by:

Pbkg(Mjj) = LandauGaussian(Mjj) + Gaussian(Mjj) (9.3)
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Figure 9.3: The reconstructed Mjj signal distribution at various values of ∆JES , along with the
fitted probability distribution functions.

The constant background probability density function is defined by 7 total parameters. The fit is

compared to the background template in Figure 9.4.

The likelihood function to be maximized is:

LMjj
= Lshape × LNevts × LBkg. (9.4)

Most of the information comes from the term Lshape:

Lshape =
N∏

n=1

NsigPsig(Mjj ;∆JES) + NbkgPbkg(Mjj)

Nsig + Nbkg
(9.5)

which gives the probability for an event n that Mjj comes from background or signal. The number

of signal events is given by Nsig and the number of background events by Nbkg. The product runs

over N events in the range 30 GeV/c2 ≤ Mjj ≤ 150 GeV/c2. The term LNevts is a simple Poisson:

LNevts =
e−(Nsig+Nbkg)(Nsig + Nbkg)

N

N !
. (9.6)

The term LBkg constrains the normalization of the background to the expectation in Table 5.3:

LBkg = exp(−
(Nbkg − Nexp

bkg )2

2σ2
exp

). (9.7)

I use Minuit to minimize −lnLMjj
.
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Figure 9.4: The reconstructed Mjj background distribution (at ∆JES = 0) along with the fitted
probability density function.

9.3 Parameterizing the Response Matrix

Figure 9.5 shows the shape of the reconstructed Mtt distributions at ∆JES = {−2, 0, 2} · σJES for

events with M true
tt

in each bin of M true
tt

. The variation of the Mtt distributions is well-behaved

as a function of ∆JES - the distributions become harder as ∆JES increases, as expected. For the

detector response matrix derived from the distribution of M true
tt

versus Mtt the entries vary in a

mostly monotonic fashion as a function of ∆JES . I fit each bin of the matrix as a quadratic function

of ∆JES .

9.4 Parameterizing the Acceptance

The acceptance varies linearly with ∆JES in each bin. I parameterize the denominator in each bin

(without the bin width, as in Table 7.2) as a linear function of ∆JES , as shown in Figure 9.6.

9.5 Tests of Analysis Procedure with in-situ Jet Energy

Scale Calibration

I test this new procedure by performing pseudo-experiments. The procedure is similar to that

described in Section 7.3. The number of signal and background events for each pseudo-experiment

is given by a fluctuation of the expectation for the 2.7 fb−1 dataset. The Mjj and Mtt distributions

for each pseudo-experiment are drawn at random from a 2-dimensional distribution of Mjj versus

Mtt in the Monte Carlo simulations for signal and background. By drawing from this 2-dimensional

distribution, the small correlations between Mjj and Mtt are modeled in the pseudo-experiments.

I fit the Mjj distribution to obtain ∆JES , then unfold the reconstructed Mtt distribution with the

appropriate detector response matrix and divide by the appropriate acceptance to obtain dσ/dMtt.
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Figure 9.5: Variation of Mtt with ∆JES in each bin of M true
tt

. Events in true bin 1 are in the top
right plot, events in true bins 2 and 3 are the in the second row, etc.
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Figure 9.6: Denominator in each bin as a function of ∆JES . Bins 1 and 2 are in the first row, 3 and
4 in the second row, etc. The points are the values for ∆JES = {−2,−1, 0, 1, 2} ·σJES and the black
line is the fitted function.
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Figure 9.7: Mean value of ∆fit
JES from pseudo-experiments versus ∆true

JES .

First I check the linearity of the ∆JES fit by plotting the fitted value of ∆JES , ∆fit
JES , versus the

true (input) value ∆JES , ∆true
JES , for pseudo-experiments performed at a range of ∆true

JES values. The

result is shown in Figure 9.7. A fit to the ∆fit
JES versus ∆true

JES line gives:

∆fit
JES = 0.98 · ∆true

JES + 0.09 (9.8)

which indicates that a small correction is needed to the value of ∆fit
JES to obtain the true value. The

means of the the pull distributions for ∆fit
JES show similar shifts from zero.

I apply the correction to the ∆fit
JES from Equation 9.8 and repeat the pseudo-experiments. The

new ∆fit
JES versus ∆true

JES curve is shown in Figure 9.8. The means and widths of the pull distributions

for ∆fit
JES at various values of ∆true

JES are shown in Figures 9.9 and 9.10. The correction has removed

the bias in the value of ∆fit
JES . Furthermore, the uncertainty returned by the fit is accurate as the

pull widths are consistent with one across the range of ∆true
JES values. The resolution of the fit is

shown in Figure 9.11. The uncertainty is approximately 0.46 · σJES - it is slightly higher at large

negative values of ∆true
JES and slightly lower at large positive values of ∆true

JES . This is significantly

less than the 1 · σJES uncertainty of the nominal jet energy scale. The trade-off for the reduced

systematic uncertainty is an increase in the statistical uncertainty. I will show in the next section

that the end result is an overall reduction in the total expected uncertainty.

I also check in these pseudo-experiments the pulls for the unfolded number of events in each

bin. The input covariance matrix to the unfolding includes the uncertainty on the background

expectation in each bin and the Poisson uncertainty on the number of events reconstructed in each

bin as before in addition to a contribution from the uncertainty on ∆fit
JES . The pull means and

widths are generally consistent with zero and one, respectively, within their uncertainties. For those

bins with a pull width less than one I do not correct for the over-estimation of the uncertainty. For
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Figure 9.8: Mean value of ∆fit
JES from pseudo-experiments versus ∆true

JES after the correction is
applied.
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Figure 9.9: Mean of ∆fit
JES pull distribution versus ∆true

JES after the correction is applied.
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Figure 9.10: Width of ∆fit
JES pull distribution versus ∆true

JES after the correction is applied.
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Pull Mean
Mtt [GeV/c2] ∆true

JES=-1 ∆true
JES=0 ∆true

JES=1
0-350 0.11 ± 0.03 −0.02 ± 0.02 0.06 ± 0.02

350-400 0.09 ± 0.03 0.05 ± 0.02 0.09 ± 0.02
400-450 −0.03 ± 0.02 0.04 ± 0.02 0.02 ± 0.02
450-500 −0.07 ± 0.02 0.02 ± 0.02 −0.01 ± 0.02
500-550 −0.03 ± 0.02 −0.02 ± 0.02 0.01 ± 0.02
550-600 −0.04 ± 0.02 −0.05 ± 0.02 −0.00 ± 0.02
600-700 0.04 ± 0.02 −0.01 ± 0.02 −0.02 ± 0.02
700-800 0.12 ± 0.02 0.08 ± 0.02 −0.01 ± 0.02
800-1400 0.13 ± 0.02 0.13 ± 0.02 0.02 ± 0.02

Pull Width
Mtt [GeV/c2] ∆true

JES=-1 ∆true
JES=0 ∆true

JES=1
0-350 1.12 ± 0.02 1.07 ± 0.02 1.01 ± 0.02

350-400 1.11 ± 0.02 1.09 ± 0.02 1.01 ± 0.02
400-450 0.92 ± 0.01 0.92 ± 0.01 0.89 ± 0.01
450-500 0.98 ± 0.02 0.93 ± 0.02 0.92 ± 0.02
500-550 1.00 ± 0.02 0.95 ± 0.01 0.93 ± 0.02
550-600 1.01 ± 0.02 0.97 ± 0.02 0.94 ± 0.01
600-700 1.01 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
700-800 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02
800-1400 0.93 ± 0.02 0.92 ± 0.01 0.94 ± 0.02

Table 9.1: The mean and widths of the pull for the number of unfolded events in each bin, as defined
in Equation 7.48, at various ∆JES points.
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those means that are shifted from zero, the effect on the final cross section is small with respect to

the statistical uncertainty and I do not correct for it.

9.6 New Systematic Uncertainties

In addition to the systematic uncertainties described in Chapter 8, there are additional systematic

uncertainties associated with the ∆JES measurement. First, there is a “residual” ∆JES uncertainty

associated with describing the jet energy scale as one large shift from the nominal, rather than

as shifts from each individual level of correction described in Section 4.2.4. This uncertainty is

assessed by shifting each level of uncertainty on the jet energy scale: relative, multiple interactions,

absolute, and out of cone individually and then adding the result in quadrature. Secondly there is

an uncertainty on the b-jet energy scale. This is added because the jets from W are light quarks,

but I apply the correction to all jets in the event. The b-jet energy scale uncertainty includes an

uncertainty on the b-jet semi-leptonic branching ratio and the b-quark fragmentation in the Monte

Carlo simulation and the energy scale of the b-jets themselves. The updated systematic uncertainties

are presented in Table 9.6. The total does not include the 6% uncertainty due to the luminosity

measurement.

Bin Number 1 2 3 4 5 6 7 8 9
MC Gen. 0.7 2.4 5.3 5.7 4.6 3.3 1.4 0.0 1.0
ISR/FSR 1.5 1.3 0.8 0.2 1.1 2.1 2.0 2.2 3.3
Residual JES 7.1 5.9 3.9 2.5 1.4 2.2 4.5 7.2 8.7
b-jet JES 4.1 2.2 1.1 1.9 1.0 0.6 0.7 2.1 2.7
Back. Shape 0.4 0.3 0.6 0.6 0.4 0.4 0.8 1.3 1.8
Back. Norm. 10.3 7.4 2.3 1.6 3.0 4.0 4.4 4.9 5.1
Acceptance 4.5 4.4 4.3 4.4 4.6 4.6 4.4 4.0 3.8
PDF Set 7.7 6.1 3.0 1.0 4.8 9.3 14.0 17.4 18.8
Total 16.0 12.6 8.9 8.1 8.9 12.0 16.1 20.1 22.2

Table 9.2: Summary of systematic uncertainties on dσ/dMtt in each bin for the improved analysis
with ∆JES fit. All uncertainties are given as percentages. The bins are defined in Table 4.3.

The total expected uncertainty of the improved analysis is given in Table 9.3. Now the statistical

uncertainty reflects the uncertainty on ∆JES . The statistical uncertainty in each bin is approximately

10% higher with respect to the baseline analysis, as given in Table 8.2. Again the 6% uncertainty

due to the luminosity measurement is not included. Table 9.4 presents side-by-side the expected

uncertainties for the baseline versus improved analysis. In the tail of the distribution, the most

relevant area for new physics, the systematic uncertainties are reduced by approximately one half.

At the same time the statistical uncertainty increases by only about 10%. The overall sensitivity is

significantly improved by the in situ jet energy scale calibration.
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Mtt [GeV/c2] Stat.+JES Sum Syst. Total
0-350 24.1 16.0 28.9
350-400 15.0 12.6 19.7
400-450 10.3 8.9 13.6
450-500 13.8 8.1 16.0
500-550 15.8 8.9 18.1
550-600 17.5 12.0 21.2
600-700 20.7 16.1 26.3
700-800 32.3 20.1 38.0
800-1400 43.8 22.2 49.1

Table 9.3: Summary of total expected uncertainties. All uncertainties are given as percentages

Baseline Analysis Improved Analysis
Mtt [GeV/c2] Stat. Sum Syst. Total Stat.+JES Sum Syst. Total
0-350 22.4 29.1 36.8 24.1 16.0 28.9
350-400 14.2 17.0 22.2 15.0 12.6 19.7
400-450 9.5 12.3 15.5 10.3 8.9 13.6
450-500 12.5 22.2 25.5 13.8 8.1 16.0
500-550 14.4 23.3 27.4 15.8 8.9 18.1
550-600 16.2 24.9 29.7 17.5 12.0 21.2
600-700 19.7 30.1 35.9 20.7 16.1 26.3
700-800 31.1 35.3 47.0 32.3 20.1 38.0
800-1400 42.1 37.6 56.5 43.8 22.2 49.1

Table 9.4: Comparison of expected uncertainties for the baseline analysis with no ∆JES fit and the
improved analysis with the ∆JES fit. All uncertainties are given as percentages and the total does
not include the uncertainty due to the luminosity measurement.
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Chapter 10

Results

10.1 Introduction

I this Chapter I will present my measurement of dσ/dMtt in 2.7 fb−1 of data. I begin in Section 10.2

by checking several relevant kinematic distributions in the data. In Section 10.3 I present the result

of the fit for ∆JES and show the unfolded Mtt distribution in Section 10.4. In Section 10.5 I give

the final calculation of dσ/dMtt and present several cross checks of the result in Section 10.6.

10.2 Kinematic Distributions

In order to check the Monte Carlo models of the signal and background in the Monte Carlo I

compare, in the data and Monte Carlo simulation, the important kinematic distributions used in the

Mtt reconstruction - the energy of the 4 most energetic jets in the event, the momentum of the lepton,

and the missing transverse energy. In these distributions, the background distribution is normalized

to the expectation in Table 5.3 and the signal distribution is the default tt model with ∆JES = 0,

normalized to the difference between the number of data events and the background expectation.

The transverse energy of the leading 4 jets in the event is shown in Figure 10.1, the transverse

momentum of the lepton is shown in Figure 10.2, and the distribution of missing transverse energy

in shown in Figure 10.3. There are no serious discrepancies with the predicted distributions.

A useful variable for discriminating tt events from other processes is HT . The HT is the scalar sum

of the transverse energy of all objects in the event - jets, missing energy and the lepton. Energetic

tt events have higher HT than other events, as can be seen in Figure 10.4. This distribution shows

consistency with SM tt production, with only a slight excess of events in the high HT tail. The

distribution of Mtt in the data is shown in Figure 10.5. The binning in this figure is slightly different

from the binning used to calculate dσ/dMtt in order to show the threshold for tt production at

low Mtt. Again there is no serious discrepancy with the models, and the distribution seems to be

consistent with SM tt production, with only a few excess events in the high Mtt region.

10.3 Mjj Fit

The Mjj distribution of the data is given in Figure 10.6. The Mjj distribution in data is shifted

slightly higher than the signal and background models at the nominal jet energy scale so I expect
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Figure 10.1: The distribution of ET for the leading 4 jets in the data.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

 [GeV/c]
T

Lepton p
0 50 100 150 200 250 300

E
ve

nt
s/

10
 G

eV
/c

0

20

40

60

80

100

120

140

160
-1

 2.7 fb≈ L ∫CDF II Data, 

tt

SM Backgrounds

Figure 10.2: The distribution of pT for the electron or muon in the data.
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Figure 10.3: The distribution of /ET in the data.
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Figure 10.4: The distribution of HT in the data.
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Figure 10.5: The distribution of Mtt in the data.
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Figure 10.6: The distribution of Mjj in the data.
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Figure 10.7: The fitted Mjj distribution in data.

to fit ∆JES > 0. Using the likelihood procedure described in detail in Section 9.2, I do fit a higher-

than-nominal value of ∆JES = 1.3± 0.5 σJES . This value is corrected according to Equation 9.8 to

give ∆data
JES = 1.27 ± 0.5 σJES . I fit a total number of background events in the data sample, Nfit

bkg,

of 123 ± 21.6, which is slightly lower than the expectation of 126 ± 22.5 given in Table 5.3. The

Mjj distribution is shown along with the signal and background templates with ∆JES = ∆data
JES in

Figure 10.7.

10.4 Unfolding

The unfolding begins by first subtracting the background distribution, shown in Figure 5.3, from

the reconstructed Mtt distribution in each bin. The total background is normalized to Nfit
bkg. The

Mtt distribution in data, with the binning used in the unfolding, is shown in Figure 10.8. In this

figure the background content has been normalized to Nfit
bkg and the difference between the data

and the background is the tt content. Next I build the detector response matrix, filled with actual

numbers of events (Equation 7.31), at ∆JES = ∆data
JES , as shown in Figure 10.9. Based on pseudo-

experiments, I set the effective rank of the system, k, to 4. The logarithm of the elements of the

vector d (Equation 7.38) for the background-subtracted data is shown in Figure 10.10. This figure is

consistent with the same effective rank as that used in the pseudo-experiments. The final unfolded

distribution, compared to the true distribution at ∆JES = ∆data
JES is shown in Figure 10.11.

10.5 Differential Cross Section

I calculate dσ/dMtt by dividing the number of tt events in each bin of the unfolded distribution by

the appropriate denominator, calculated at ∆JES = ∆data
JES (see Figure 9.6). The final differential

cross section is shown in Figure 10.12 and Table 10.1.

I will discuss in the next chapter the consistency of this result with the SM, but clearly there
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Figure 10.8: The distribution of Mtt in the data. The background distribution is normalized to Nfit
bkg

and the tt content is the difference between the data and the background.
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Figure 10.11: The unfolded background-subtracted Mtt distribution in data.

∆data
JES (after correction) [σJES ] 1.3 ± 0.5

Mtt [GeV/c2] dσ/dMtt [fb/GeV/c2]

≤ 350 0.47 ± 0.07 (stat.+JES) ± 0.08 (syst.) ± 0.028 (lumi.)
350-400 62.3 ± 7.0 (stat.+JES) ± 7.9 (syst.) ± 3.7 (lumi.)
400-450 33.8 ± 4.0 (stat.+JES) ± 3.0 (syst.) ± 2.0 (lumi.)
450-500 15.8 ± 3.0 (stat.+JES) ± 1.3 (syst.) ± 0.9 (lumi.)
500-550 9.9 ± 2.0 (stat.+JES) ± 0.9 (syst.) ± 0.6 (lumi.)
550-600 5.7 ± 1.2 (stat.+JES) ± 0.7 (syst.) ± 0.3 (lumi.)
600-700 2.3 ± 0.6 (stat.+JES) ± 0.4 (syst.) ± 0.1 (lumi.)
700-800 0.8 ± 0.3 (stat.+JES) ± 0.2 (syst.) ± 0.0 (lumi.)
800-1400 0.07 ± 0.03 (stat.+JES) ± 0.02 (syst.) ± 0.004 (lumi.)

Integrated Cross Section [pb] 6.9 ± 1.0 (stat.+JES)

Table 10.1: Measured dσ/dMtt in 2.7fb−1 of data.
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Figure 10.12: dσ/dMtt measured in 2.7 fb−1 of data. The uncertainty does not include the 6%
uncertainty due to the luminosity measurement.

are no large deviations from the SM expectation in Figure 10.12. The integrated cross section of

7.0 ± 1.0 pb, where the uncertainty is the statistical+JES uncertainty only, is also consistent both

with the SM expectation [7] and the current CDF II combination of 7.0 ± 0.6 pb [37].

10.6 Cross Checks

I perform several cross checks of this result using different sub-samples of the data:

1. Events where the lepton is an electron.

2. Events where the lepton is a muon.

3. Events with ≥ 2 b-tags.

For each of these sub-samples I modify each piece of the analysis:

• The probability distribution functions Psig(Mjj ;∆JES) (Equation 9.1) and Pbkg(Mjj) (Equa-

tion 9.3) are changed based on the shape of the Mjj templates for each sub-sample.

• The Mtt distribution of the background that is subtracted changes to reflect the shape in each

sub-sample.

• The parameterization of the detector response matrix in terms of ∆JES changes based upon

the M true
tt

versus Mtt distribution for each sub-sample.

• The parameterization of the acceptance in terms of ∆JES changes to reflect the acceptance

for each sub-sample.

Because the physics of each of the sub-samples is the same as the complete data sample (at least in

the SM), all of the results should be consistent with each other within their associated uncertainties.
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A large discrepancy would most likely be the result of a problem calculating the acceptance, or

with any of the parameterizations used.1 The results in the various sub-samples are presented in

Table 10.2. The results are all consistent with each other, and the result in Table 10.2, within 1 · σ
of the uncertainties.

Electron Only Muon Only ≥ 2 b-tags
∆data

JES (after correction) [σJES ] 1.6 ± 0.6 0.4 ± 0.7 1.3 ± 0.7

Mtt [GeV/c2] dσ/dMtt [fb/GeV/c2] (stat.+JES uncert. only)
≤ 350 0.5 ± 0.1 0.4 ± 0.1 0.3 ± 0.1
350-400 62.7 ± 9.4 59.4 ± 10.3 46.9 ± 9.2
400-450 29.2 ± 4.9 42.7 ± 6.7 34.6 ± 6.2
450-500 13.4 ± 3.7 21.9 ± 5.0 18.1 ± 4.6
500-550 9.8 ± 2.5 11.2 ± 3.2 8.9 ± 2.9
550-600 6.0 ± 1.5 5.8 ± 1.9 4.6 ± 1.7
600-700 2.0 ± 0.7 2.6 ± 1.0 2.2 ± 1.0
700-800 0.4 ± 0.3 1.2 ± 0.5 0.8 ± 0.5
800-1400 0.03 ± 0.03 0.10 ± 0.05 0.07 ± 0.04

Integrated Cross Section [pb] 6.5 ± 1.3 7.6 ± 1.6 6.1 ± 1.4

Table 10.2: Comparison of results in different sub-samples of the data.

1It also could indicate an incredibly exotic BSM model of physics where, for example, the branching ratios of the
W -like daughters of the tt pair are drastically different from that in the SM so the W -like object decays much more
often to muons, but that would be very strange. A mistake is far more likely.
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Chapter 11

Consistency with the Standard

Model and Limits on New Physics

11.1 Introduction

In order to set limits on new physics, I need a quantitative measure of the agreement between the

data and the SM physics hypothesis as well as a measure of the agreement between the data and

the BSM physics hypothesis. I calculate a test statistic, X, which distinguishes between the SM and

BSM models. Given a distribution of X for each model and the value of X, Xobs, that I calculate

from the data, I calculate the probability that Xobs comes from each model. I will describe this

procedure in more detail in Section 11.3.

I will set limits on the coupling of Kaluza-Klein (KK) gravitons to top quarks in the Randall-

Sundrum (RS) model described briefly in Section 1.4. In the RS model a single extra dimension is

compactified to an orbifold with two branes at specific points: a “Plank brane” at φ = 0 and a “TeV

brane” at φ = π. The SM fields are confined to the TeV brane. Warping of the extra dimension

causes the Plank mass to be warped down at the TeV brane to Λ = MPle
−πκR where κ is the warp

factor and R is the size of the extra dimension. The KK gravitons couple with strength ∼ 1/Λ. The

masses of the KK gravitons are given by:

m2
n = xnκe−πκR (11.1)

where xn are the positive zeroes of the Bessel function J1(x). This leads to a series of resonances

in the tt invariant mass spectrum [9]. I set the mass of the first resonance to 600 GeV/c2, chosen

because it is well above the peak of the Mtt distribution where the effects of variations in the jet

energy scale are the largest, and set limits on the value of κ/MPl.

11.2 Generation of RS Monte Carlo Events

In order to test my new physics hypothesis I need a Monte Carlo model for the events. The first

ten RS graviton resonances are implemented in MadEvent in the topBSM model [21]. The mass

of the first resonance, and κ/MPl, can be adjusted; the widths of the resonances are calculated

internally. I generate pp → tt → W+bW−b at 7 κ/MPl points. I use the CDF standard CTEQ5L

PDFs. The events are then passed on to PYTHIA [19] for showering and put through the CDF II

detector simulation [61]. The cross sections, as calculated by MadEvent, for each κ/MPl point are

given in Table 11.1.
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κ/MPl Cross Section [pb]
0.05 8.7
0.08 8.9
0.10 9.1
0.12 9.4
0.15 9.8
0.18 10.4
0.20 10.7

Table 11.1: Cross Sections for RS gravitons at various κ/MPl points.
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Figure 11.1: The unfolded Mtt distributions for the RS graviton signal and the SM background.

The unfolded Mtt distributions for κ/MPl = 0.10 and 0.20, along with the SM background

distribution, are shown in Figure 11.1. The gravitons produce broad distortions to the tail of Mtt

spectrum which are larger for higher values of κ/MPl.

11.3 Setting Limits with CLs

I use a modified frequentist approach to set limits described in Reference [59]. Given a test statistic

X which distinguishes BSM-like outcomes from SM-like outcomes the confidence level for excluding

the presence of both the new physics and the SM is 1 − CLs+b, where CLs+b is given by:

CLs+b = Ps+b(X ≤ Xobs) (11.2)

where Ps+b is the probability to observe X less than or equal to Xobs. Ps+b gives the significance

of Xobs - for an ensemble of experiments how often would the result be more consistent with the

BSM plus SM (s+ b) hypothesis. The s+ b hypothesis is excluded at a confidence level given by the

value of 1−CLs+b. While 1−CLs+b can be used to set limits, it can be poorly behaved if there are

not enough events in the data sample to account for the SM-only hypothesis. Instead the interval
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1 − CLs = 1 − CLs+b

CLb
is used. The quantity 1 − CLb gives the confidence level for the SM-alone

where CLb is:

CLb = Pb(X ≤ Xobs). (11.3)

The probability to observe X ≤ Xobs gives the consistency of the data with the SM. The confidence

level, given by 1−CLb is the “p-value” for the SM-only hypothesis. This p-value must be very small

to indicate a serious discrepancy with the SM. A “three sigma” deviation from the SM corresponds

to a p-value of 1.3 × 10−3 while a “five sigma” deviation from the SM corresponds to a p-value of

2.87 × 10−7.1

To set a 95% confidence level lower limit on the value of κ/MPl the procedure is as follows:

1. Construct the X distribution at each κ/MPl point and for the SM background.

2. Calculate CLs+b, CLb and CLs at each κ/MPl point.

3. The 95% confidence level lower limit is given by the value of κ/MPl where 1 − CLs = 0.95.

The expected limits can be calculated in pseudo-experiments using SM-only events. Before I describe

how I construct the X distributions, I will detail the test statistic that I use.

11.3.1 The Anderson-Darling Statistic

The Anderson-Darling statistic, denoted A2, is a particularly useful statistic for detecting deviations

in the tails of a distribution [58, 60]. I calculate A2 by comparing the unfolded Mtt distribution

in the data to the M true
tt

distribution in the SM Monte Carlo simulation. In the data there are N

events in the unfolded distribution divided into B = 9 bins with dj events in bin j. The distribution

function, Sk, for the data is given by:

Sk =
1

N

k∑

j=1

dj , k = 1, ..., 9 (11.4)

The SM M true
tt

distribution has M events in B = 9 bins with d′j events in bin j. The distribution

function for the SM, S′
k, is given by:

S′
k =

1

M

k∑

j=1

d′j , k = 1, ..., 9 (11.5)

The Anderson-Darling statistic is defined as:

A2 ≡ NM

N + M

B−1∑

j

(Sj − S′
j)

2

S′′
j (1 − S′′

j )

d′′j
D′′ (11.6)

1The relationship between p-value and significance levels in terms of sigma is based on the Gaussian distribution.
A three sigma deviation is considered significant evidence for a deviation; a five sigma deviation is required to claim
discovery.
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Figure 11.2: The fraction of pseudo-experiments with small p-values for a SM-only hypothesis for
events in the BSM model with κ/MPl = 0.15.

where d′′j = dj + d′j , D′′ =
∑B−1

j d′′j and S′′
k is defined as in Equation 11.5 with d′′j substituting for

dj .

The distribution function is a probability distribution. Sk gives the fraction of events in the data

for bin 1 to bin k, when k = 9, Sk = 1. By comparing the distribution function for the data to the

distribution function in the SM, I’m looking for large deviations from the expected SM distribution

function. The term S′′
j (1−S′′

j ) in the denominator of Equation 11.6 gives greater weight to deviations

in the tails of the distribution.

The optimal bin range for the summation in Equation 11.6 can be found by finding the bin

range which gives the best sensitivity to new physics and the best expected limit. To test the best

bin range for maximum sensitivity to BSM physics I perform pseudo-experiments where the data is

drawn from the Monte Carlo model of RS gravitons with κ/MPl = 0.15. I then calculate the p-value

for Xobs in each pseudo-experiment for the SM-only model, given by 1 − CLb. I want to chose the

bin range which gives the largest fraction of small p-values - which would indicate disagreement with

the SM model. The largest disagreement with SM is seen when the A2 sum begins with bin four.

In Figure 11.3 I show the fraction of pseudo-experiments where the p-value from the RS model with

κ/MPl = 0.15 is less than 0.05, which peaks for starting with the fourth bin of the Mtt distribution.

The expected limit versus the starting bin number is shown in Figure 11.2. The best expected limit

is set when starting at j = 4, or Mtt ≥ 450 GeV/c2. I set limits by computing the A2 statistic for

Mtt ≥ 450 GeV/c2.

11.3.2 Constructing the Distributions

I use a pseudo-experiment technique to construct the A2 distribution for each model. When con-

structing the distribution functions for each pseudo-experiment I need to take into account two

effects: statistical fluctuations in the data and systematic uncertainties on the Monte Carlo models.

The distribution function for the data in each pseudo-experiment, Sk, is given by a Poisson fluctua-
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Figure 11.3: The expected limit versus the starting bin number for the summation in Equation 11.6.

tion of the expectation in the SM. To construct the distribution function for the Monte Carlo model,

S′
k, an additional systematic “fluctuation” is required. This systematic fluctuation is achieved by

first smearing the mean expectation in each bin of the Monte Carlo distribution, µi, according to

the systematic uncertainty in that bin, σµi
. Assuming Gaussian uncertainties, the mean is shifted

to µ′
i, a random number pulled from a Gaussian with mean µi and width σµi

. S′
k is constructed

from a Poisson fluctuation of µ′
i.

The most rigorous procedure would be to perform a systematic fluctuation for each systematic

uncertainty listed in Table 9.6. Each fluctuation would shift the expectation in each bin to a new

value µ′
i. In practice the effect of systematic uncertainties in the Monte Carlo model produce only

small changes to the A2 distribution in my analysis. I have found that the only appreciable change to

A2 occurs when the SM is modeled with the PDF MRST72 instead of CTEQ5L. Because the sum total

of the systematic uncertainties would be somewhere between the SM distribution and the extreme

set by the MRST72 distribution, I take a conservative approach and use the A2 distribution generated

with MRST72 to represent the total effect of all the systematic uncertainties. The limit I calculate

will not be stronger than the limit I would calculate with the full systematic procedure implemented.

At the same time, the limit will not be significantly worse because the expected limit is relatively

insensitive to the systematic uncertainties.

11.4 Limits on the Coupling of RS Gravitons to Top Quarks

The distribution of A2 in the SM-only hypothesis, compared to the distribution for two κ/MPl

points is shown in Figure 11.4. I measure A2 = 0.61. The confidence level for the SM alone, given

by 1 − CLb, is 28%, which is consistent with a SM-only hypothesis. The observed confidence level

at each κ/MPl point is given in Figure 11.5. I exclude κ/MPl > 0.16 at the 95% confidence level.
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Chapter 12

Conclusions

I have measured the tt differential cross section, dσ/dMtt, in 2.7 fb−1 of data. The p-value for this

measurement, in the SM-only hypothesis, is 34%. I set a limit on the value of κ/MPl in the RS

model of κ/MPl > 0.16 at the 95% confidence level by studying the coupling of KK gravitons to top

quarks, where the mass of the first resonance is 600 GeV/c2.

The unfolding technique that I have used is applicable to other measurements of the tt system.

Besides dσ/dMtt, many other differential distributions provide a window to physics beyond the SM.

For example, dσ/dcosθ provides a handle on the spin of particles which may appear as resonances

in the Mtt distribution. This distribution will be smeared by the same effects which smear the Mtt

distribution. If a resonance were discovered in Mtt, study of dσ/dcosθ would provide additional key

information about the source of the resonance.

While I have not found evidence for new physics, a large range of κ/MPl values are allowed by

the limit I set. This limit could be improved at the Tevatron with the application of more data.

The beginning of physics at the LHC will allow for the study of the high mass region of Mtt that is

inaccessible at the Tevatron. In this region the higher mass KK resonances would be visible. The

Mtt spectrum may yet provide a glimpse of new physics.
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